Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
25
Добавлен:
02.04.2015
Размер:
300.18 Кб
Скачать

+

+

The effect of thermodynamic properties on sublation performance was illustrated by plotting the fractional removal versus the enhancement factor, H, which accounts for the surface-active nature of compounds. It was shown that large enhancement factors have favorable effects on fractional removal for nonvolatile compounds. However, as the volatility increases, the effect of the enhancement factor becomes less important.

Finally, the effects of design variables were discussed. It was shown that small improvements in sparger design (i.e., producing smaller bubbles) can have a significant, favorable effect on sublation performance. Additionally, it was shown that the effect of the column diameter on axial mixing does not influence sublation performance.

Acknowledgment

This work was supported in part by the National

Science Foundation/EPSCOR program {NSF/LaSER (1992-96) ADP-03}.

Nomenclature

a ) bubble radius, cm

A ) dimensionless air concentration, A CA/HCw°

CA ) effective concentration of pollutant in air, mol/cm3 Co ) concentration of pollutant in solvent, mol/cm3

Cv ) concentration of pollutant in air, mol/cm3 Cw ) concentration of pollutant in water, mol/cm3 CP ) chlorinated phenol

di ) bubble-wake thickness, cm D ) dispersion coefficient, cm2/s

Eo ) solvent-side entrainment number, Eo 3QAdi/QoKowa Ew ) water-side entrainment number, Ew 3(QAdi/Qwa) FR ) fractional removal, FR 1 - Cw/Cw°

H ) effective Henry's law constant, Hc + 3KA/a Hc ) Henry's law constant, cm3/cm3

i ) number of stages comprising the SCM

k ) overall mass-transfer coefficient (air-water), cm/s kl ) overall water-side mass-transfer coefficient (solvent-

water), cm/s

KA ) surface adsorption constant, cm

Kow ) solvent-water partition coefficient, cm3/cm3 Kow′′ ) octanol-water partition coefficient, cm3/cm3 L ) length of bubble column, cm

L/Dc ) column length to diameter ratio

m ) mass of pollutant carried by an air bubble, g

n ) number of stages comprising the water column, n ) i - 1

PA ) air-solvent capacity factor, PA QAHc/QoKow

Pw ) water-solvent capacity factor, Pw Eo/Ew Qw/QoKow PAH ) polynuclear aromatic hydrocarbon

Pe1 ) air-phase Peclet number, Pe1 QAL/ðrc2 D

Pe2 ) water-phase Peclet number, Pe2 QwL/ðrc2(1 - )D QA ) air flow rate, cm3/s (cm3/min)

Qo ) solvent flow rate, cm3/s (cm3/min) Qw ) water flow rate, cm3/s (cm3/min) rc ) radius of bubble column, cm

S ) dimensionless solvent concentration, S Co/KowCw° Sh1 ) air-phase Sherwood number, Sh1 3kL2/aDH Sh2 ) water-phase Sherwood number, Sh2 (3kL2/aD)( /

(1 - ))

StA ) air-side Stanton number (air-water), StA 3kðrc2L /

aQAH

Sto ) solvent-side Stanton number (solvent-water), Sto

kðrc2(1 - )/QoKow

Stw ) water-side Stanton number (solvent-water), Stw

klðrc2(1 - )/Qw

Ind. Eng. Chem. Res., Vol. 35, No. 5, 1996 1697

StwA ) water-side Stanton number (air-water), StwA

3kðrc2L /aQw

te ) exposure time

ug ) superficial gas velocity, cm/s Vb ) bubble volume, cm3

Vo ) volume of solvent, cm3 Vw ) wake volume, cm3

W ) dimensionless water concentration, W Cw/Cw°

Greek Letters

) gas holdup, cm3/cm3

H ) Henry's enhancement factor, H 1 + 3KA/aHc) scale factor, QoL2/DVo

¡ ) surface concentration, mol/cm2

ì) dispersivity, cm

í) fluid viscosity, g/cm s F ) fluid density, g/cm3

ó ) surface tension, dyn/cm

ª ) separation factor, ª Co/KowCw ô ) dimensionless time, ô tD/L2 ê ) dimensionless distance, ê x/L ¾ ) kinetic factor

Appendix

The analytic solution to the SCM with i ) 2 (n ) 1)

is

W ) [(1 + StA)(1 + Sto + Eo + PA)]/

[(1 + StA){(1 + PA)(1 + Ew + Stw) + Eo + Sto} +

StwA(1 + Eo + Sto + PA) - StAPA H(Ew + Stw)]

A ) [StA(1 + Sto + Eo + PA)]/

[(1 + StA){(1 + PA)(1 + Ew + Stw) + Eo + Sto} +

StwA(1 + Eo + Sto + PA) - StAPA H(Ew + Stw)]

S ) [(1 + StA)(Sto + Eo) + PAStA H]/

[(1 + StA){(1 + PA)(1 + Ew + Stw) + Eo + Sto} +

StwA(1 + Eo + Sto + PA) - StAPA H(Ew + Stw)]

By manipulating eq 15, one can express the fractional removal and the separation factor in simple terms of the water and solvent concentrations,

FR

 

)

1

 

- 1

ª

)

 

 

1

1 - FR

W

1 - ª

W

- 1

 

 

 

 

 

 

 

 

 

 

 

 

S

 

When the analytic solution is substituted for W and S, the exact solutions for the fractional removal and the separation factor result.

FR

 

)

StwA

 

+

 

 

 

 

 

1 - FR

1 + St

 

 

 

 

 

 

 

+ St w+ E ][1 + PA(1 - H1 + StA

)]

 

 

[1 + P w

 

 

 

A

 

 

 

 

 

 

 

 

E

 

+ St

 

 

St

 

 

 

 

 

A

 

o

o

 

A

+

+

1698 Ind. Eng. Chem. Res., Vol. 35, No. 5, 1996

 

Eo + Sto + PA H

StA

ª

1 + StA

 

1 - ª ) ( StA )

1 + PA 1 - H1 + StA

The appropriate boundary conditions for the ADM2 are

ddAêjê)0 ) 0 ddWê jê)1 ) 0

ddAêjê)1 ) -Pe1Aê)1

ddWê jê)0 ) Pe2(Ew + Stw)(Wjê)0 - S) - Pe2(1 - Wjê)0)

where it has been assumed that the solvent and air enter the column free of pollutant. The analytic solution is given in terms of the following variables:

â

 

) 1 -

Pe1

ì

 

-

1

ì

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Sh1

2

Sh1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

õ

 

 

 

 

a1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

(3

+ 240°

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

ì2 ) 2

 

 

-Q cos

 

 

-

 

 

 

â

 

) 1 -

Pe1

ì

 

-

1

ì

2

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Sh1

3

Sh1

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

õ

 

 

 

 

a1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

(3

+ 120°

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

ì3 ) 2

 

 

-Q cos

 

 

-

 

 

 

 

 

 

 

Pe1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

õ

 

 

a1

 

â4 ) 1 -

 

ì4 -

 

ì4

 

ì4 ) 2x-Q cos(3)

-

 

 

 

Sh1

Sh1

 

3

 

a1 ) Pe1 - Pe2

a2 ) -(Pe1Pe2 + Sh1 + Sh2)

a3 ) Sh1Pe2 - Sh2Pe1

cos õ ) R/x-Q3

R ) (9a a

2

- 27a

3

- 2a 3)/54

 

 

 

1

 

1

 

 

 

 

Q ) (3a2 - a12)/9

 

 

 

 

ç1 ) Pe2[1 + (Ew + Stw)(1 -

E

+ St

o

)]

o

 

1 + P + E

o

+ St

 

 

 

 

 

A

 

o

PA H

ç2 ) Pe2(Ew + Stw)1 + PA + Eo + Sto

A ) [ ì4(1 +

ì4

)

- eì4ê]-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pe1

 

 

[

 

 

 

(

 

 

 

 

 

Pe1)

 

 

 

 

 

]

/

 

 

[

 

 

 

 

(

 

 

 

 

 

 

 

Pe1)

 

 

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

eì2

 

 

1

 

+

ì2

 

 

- eì2ê

 

 

+

3

 

eì3

 

1 +

ì3

 

 

- eì3ê

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ç

 

- ç

 

]{[eì4(1 +

 

ì

 

 

 

 

â

(ç

- ì ) - ç

2

 

 

 

 

 

 

[

 

 

 

1

 

 

2

4

 

)

-

 

4

 

 

1 4

 

 

 

]-

 

 

 

 

 

 

Pe2

 

 

 

Pe1

 

 

 

 

 

ç1 - ç2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eì2 1 +

ì2

-

â2(ç1 - ì2) - ç2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ (

 

 

 

Pe1)

 

 

 

 

 

 

 

ç1 - ç2

 

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ì3

 

 

1 +

ì3

-

â3(ç1 - ì3) - ç2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ (

 

 

 

 

Pe1)

 

 

 

 

 

ç1 - ç2

 

 

]}

 

[

 

 

 

 

(

 

 

 

 

 

 

Pe1)

 

 

 

 

]

 

 

 

 

 

 

 

 

W )

 

 

 

eì4

 

 

1

+

 

ì4

 

 

- â4eì4ê

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2[eì2(1 +

ì2

)- â2eì2ê]+ 3[eì3(1 +

ì3

)- â3eì3ê]/

Pe1

Pe1

 

ç

 

- ç

 

]{[eì4(1 +

 

ì

 

 

 

 

â

(ç

- ì ) - ç

2

 

 

 

 

 

 

[

 

 

 

1

 

 

 

2

4

)

-

 

4

 

 

1 4

 

 

 

]-

 

 

 

 

 

 

Pe2

 

 

 

Pe1

 

 

 

 

 

ç1 - ç2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eì2 1 +

ì2

-

â2(ç1 - ì2) - ç2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ (

 

 

 

Pe1)

 

 

 

 

 

 

 

ç1 - ç2

 

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eì3

 

 

1 +

ì3

-

â3(ç1 - ì3) - ç2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

[ (

 

 

 

 

Pe1)

 

 

 

 

 

ç1 - ç2

 

 

]}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

(ì2)(â2eì2

- â3eì3)

 

 

 

 

 

 

 

 

 

(ì3)(â2eì2

- â3eì3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ì

4

 

â

 

eì4

-

â eì3

 

 

 

 

 

 

 

 

 

 

 

ì

4

â

eì4

- â

eì2

2 )

 

 

 

 

 

4

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3 )

 

 

 

4

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

S ) HPAAjê)0 + (Eo + Sto)Wjê)0

1 + PA + Eo + Sto

Literature Cited

Akita, K.; Yoshida, F. Gas Holdup and Volumetric Mass Transfer Coefficient in bubble Columns. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 76.

Caballero, M.; Cela, R.; Perez-Bustamante, J. A. Solvent Sublation of Some Priority Pollutants (Phenols). Anal. Lett. 1988, 21 (1), 63-76.

Caballero, M.; Cela, R.; Perez-Bustamente, J. A. Studies on the Use of Colloidal Gas Aphrons in Coflotation and Solvent Sublation Processes. A Comparison with the Conventional Technique. Sep. Sci. Technol. 1989, 24, 629-640.

Cervera, J.; Cela, R.; Perez-Bustamante, J. A. Analytical Solvent Sublation of Metallic Dithizonates Part I. Solvent Sublation of Copper. Analyst 1982, 107, 1425-1430.

Clift, R.; Grace, J. R.; Weber, M. E. Formation and Breakup of Fluid Particles. Bubbles, Drops, and Particles; Academic Press: San Diego, 1978; pp 321-328.

Deckwer, W. D.; Schumpe, A. Improved Tools for Bubble Column Reactor Design and Scale-Up. Chem. Eng. Sci. 1993, 48 (5), 889-911.

Deckwer, W. D.; Burckhart, R.; Zoll, G. Mixing and Mass Transfer in Tall Bubble Columns. Chem. Eng. Sci. 1974, 29, 2177-2188.

Deckwer, W. D.; Tien, K. N.; Kelkar, B. G.; Shah, Y. T. Applicability of Axial Dispersion Model to Analyze Mass Transfer Measurements in Bubble Columns. AIChE J. 1983, 29 (6), 915-921.

Fan, L. S.; Tsuchiya, K. Wake Sizes. In Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions; Brenner, H., Ed.; Butterworth-Heinemann: Stoneham, MA, 1990; Chapter 5.

Finch, J. A.; Dobby, G. S. Column Flotation; Pergamon Press: Toronto, 1990; Chapter 1.

+

+

Fogler, H. S. Analysis of Nonideal Reactors. Elements of Chemical Reaction Engineering; Prentice-Hall: Englewood Cliffs, NJ, 1992; Chapter 14.

Foltz, L. K.; Carter, K. N.; Wilson, D. J. Removal of Refractory Organics by Aeration. VII. Solvent Sublation of Indene and Aldrin. Sep. Sci. Technol. 1986, 21 (1), 57-78.

Geary, N. W.; Rice, R. G. Bubble Size Prediction for Rigid and Flexible Spargers. AIChE J. 1991, 37 (2), 161-168.

Hikita, J.; Asai, K.; Tanigawa, K.; Segawa, K.; Kitao, M. Gas Holdup in Bubble Column. J. Chem. Eng. 1980, 20, 59.

Hoff, J. T.; Mackay, D.; Gillham, R.; Shiu, W. Y. Partitioning of Organic Chemicals at the Air-Water Interface in Environmental Systems. Environ. Sci. Technol. 1993, 27 (10), 2174-2180.

Huang, S. D.; Valsaraj, K. T.; Wilson, D. J. Removal of Refractory Organics by Aeration. V. Solvent Sublation of Naphthalene and Phenanthrene. Sep. Sci. Technol. 1983, 18 (10), 941-968.

Huiru, D.; Xiuyu, Y. Solvent SublationsSpectrophotometric Determination of Zinc(II) with Thiocyanate and Malachite Green. Anal. Lett. 1988, 21 (6), 1065-1073.

Johnson, B. D.; Gershey, R. M. Bubble Formation at a Cylindrical Frit Surface in a Shear Field. Chem. Eng. Sci. 1990, 46 (10), 2753-2756.

Johnson, B. D.; Gershey, R. M.; Cooke, R. C.; Sutcliffe, W. H. A Theoretical Model for Bubble Formation at a Frit Surface in a Shear Field. Sep. Sci. Technol. 1982, 17 (8), 1027-1039.

Karger, B. L. In Adsorptive Bubble Separation Techniques; Lemlich, R., Ed.; Academic Press: New York, 1972, Chapter 8.

Karger, B. L.; Caragay, A. B.; Lee, S. B. Studies in Solvent Sublation: Extraction of Methyl Orange and Rhodamine B. Sep. Sci. 1967a, 2 (1), 39-64.

Karger, B. L.; Grieves, R. B.; Lemlich, R.; Rubin, A. J.; Sebba, F.

Nomenclature Recommendations for Adsorptive Bubble Separation Methods. Sep. Sci. Technol. 1967b, 2, 401.

Karger, B. L.; Pinfold, T. A.; Palmer, S. E. Studies in the Mechanism of Sublate Removal by Solvent Sublation. Part I. Sep. Sci. 1970, 5 (5), 603-617.

Kown, B. T.; Wang, L. K. Solute Separation by Continuous Bubble Fractionation. Sep. Sci. 1971, 6 (4), 537-552.

Lemlich, R. A Theoretical Approach to Nonfoaming Adsorptive Bubble Fractionation. AIChE J. 1966, 12 (4), 802-804.

Lionel, T.; Wilson, D. J.; Pearson, D. E. Removal of Refractroy Organics from Water by Aeration. I. Methyl Chloroform. Sep. Sci. Technol. 1981, 16 (8), 907-935.

Lu, X.; Valsaraj, K. T.; Thibodeaux, L. J. Studies in Batch and Continuous Solvent Sublation. IV. Continuous Countercurrent Solvent Sublation and Bubble Fractionation of Hydrophobic Organics from Aqueous Solutions. Sep. Sci. Technol. 1991, 26

(7), 977-989.

Mackay, D.; Shiu, W.; Valsaraj, K. T.; Thibodeaux, L. J. Air-Water Transfer: The Role of Partitioning. In Air Water Mass Transfer; Gulliver, J.; Wilhelm, S.; Eds.; American Society Civil Engineering: New York, 1990.

Marshall, S. H.; Chudacek, M. W.; Bagster, D. F. A Model for Bubble Formation from an Orifice with Liquid Cross-Flow. Chem. Eng. Sci. 1993, 48 (11), 2049-2059.

Michelsen, D. L.; Ruettimann, K. W.; Hunter, K. R.; Sebba, F.

Feasibility Study on the Use of Predispersed Solvent Extraction/ Flotation Techniques for Removal of Organics from Wastewaters. Chem. Eng. Commun. 1986, 48, 155-163.

Montgomery, J. H.; Welkom, L. M. Groundwater Chemicals Desk Reference; Lewis Inc.: Chelsea, U.K., 1990; p 640.

Nolan, B. T.; McTernan, W. F. Application of Solvent Sublation to the Simultaneous Removal of Emulsified Coal Tar and Dissolved Organics. Chem. Eng. Commun. 1988, 63, 1-15.

Sebba, F. Ion Flotation; Elsevier Publishing Co.: New York, 1962. Shah, Y. T.; Kelkar, B. G.; Godbole, S. P.; Deckwer, W. D. Design Parameter Estimations for Bubble Column Reactors. AIChE J.

1982, 28 (3), 353-379.

Ind. Eng. Chem. Res., Vol. 35, No. 5, 1996 1699

Shetty, S. A.; Kantak, M. V.; Kelkar, B. G. Gas-Phase Backmixing in Bubble-Column Reactors. AIChE J. 1992, 38 (7), 1013-1026.

Sheu, G. L.; Huang, S. D. Solvent Sublation and Adsorbing Colloid Flotation of Magenta. Sep. Sci. Technol. 1987, 22 (11), 2253-

2262.

Shih, K. Y.; Han, W. D.; Huang, S. D. Solvent Sublation of Hexachlorobutadiene and 2,4,6-Trichlorophenol. Sep. Sci. Tech.

1990, 25 (4), 477-487.

Shin, H. S.; Coughlin, R. W. Removal of Organic Compounds from Water by Solvent Sublation. J. Colloid Interface Sci. 1990, 138

(1), 105-112.

Spargo, P. E.; Pinfold, T. A. Studies in the Mechanism of Sublate Removal by Solvent Sublation. Part II. Sep. Sci. 1970, 5 (5), 619-635.

Stachurski, J.; Szeglowski, Z. Verification of a Stochastic Model for a Frothless Solvent Ion Flotation Using Thulium and Americium. Sep. Sci. 1974, 9 (4), 313-324.

Tamamushi, K.; Wilson, D. J. Removal of Refractory Organics by Aeration. VI. Solvent Sublation of Alkyl Phthalates. Sep. Sci. Technol. 1984-5, 19, 1013-1023.

Valsaraj, K. T. Removal of Organics from Water by Non-foaming Flotation In Flotation-Science and Engineering; Matis, K. A., Ed.; Marcel Dekker: New York, 1995; pp 365-383.

Valsaraj, K. T.; Wilson, D. J. Removal of Refractory Organics by Aeration. IV. Solvent Sublation of Chlorinated Organics and Nitrophenols. Colloids Surf. 1983, 8, 203.

Valsaraj, K. T.; Springer, C. Removal of Traces of Pentachlorphenol from Aqueous Acidic Solutions by Sovlent Extraction and Sovlent Sublation. Sep. Sci. Technol. 1986, 21 (8), 789-807.

Valsaraj, K. T.; Thibodeaux, L. J. Studies in Batch and Continuous Solvent Sublation. I. A Complete Model and Mechanisms of Sublation of Neutral and Ionic Species from Aqueous Solutions. Sep. Sci. Technol. 1991a, 26 (1), 37-58.

Valsaraj, K. T.; Thibodeaux, L. J. Studies in Batch and Continuous Solvent Sublation. II. Continuous Countercurrent Solvent Sublation of Neutral and Ionic Species from Aqueous Solutions. Sep. Sci. Technol. 1991b, 26 (3), 367-380.

Valsaraj, K. T.; Thoma, G. J.; Thibodeaux, L. J.; Wilson, D. J.

Nonfoaming Adsorptive Bubble Separation Processes. Sep. Technol. 1991, 1, 234-243.

Valsaraj, K. T.; Lu, X. Y.; Thibodeaux, L. J. Continuous Nonfoaming Adsorptive Bubble Separation Processes for the Removal of Hydrophobic Organic Compounds from the Aqueous Phase: ACS Symp. Ser. 1992, 509, 116-128.

Wang, W. K.; Huang, S. D. Solvent Sublation and Adsorptive Flotation/Sublation of Diphenyl. Sep. Sci. Technol. 1988, 23

(4 & 5), 375-385.

Wang, Y.; Deng, T.; Ke, J. J. Gold Recovery with Solvent Sublation from Chloride Solutions. Int. J. Miner. Proc. 1993, 40, 57-68.

Wilson, D. J.; Valsaraj, K. T. Removal of Refractory Organics by Aeration. III. A Fast Algorithm for Modeling Solvent Sublation Columns. Sep. Sci. Technol. 1982-3, 17 (12), 1387-1396.

Womack, J. L.; Lichter, J. C.; Wilson, D. J. Removal of Refractory Organics from Water by Aeration. II. Solvent Sublation of Methylene Blue and Methyl Orange. Sep. Sci. Technol. 1982,

17 (7), 897-924.

Received for review June 16, 1995

Accepted February 13, 1996X

IE9503656

X Abstract published in Advance ACS Abstracts, April 1, 1996.