II. Молекулярная (статистическая) физика и термодинамика
7. Распределения Максвелла и Больцмана
На рисунке
представлен график функции распределения
молекул идеального газа по скоростям
(распределение Максвелла), где
–
доля молекул, скорости которых заключены
в интервале скоростей от v до v+dv в расчете
на единицу этого интервала.
Для
этой функции верным утверждением
является…
![]()
при изменении температуры площадь под кривой не изменяется
![]()
при изменении температуры положение максимума не изменяется
![]()
с уменьшением температуры величина максимума уменьшается
![]()
На рисунке
представлен график функции распределения
молекул идеального газа по скоростям
(распределение Максвелла), где
–
доля молекул, скорости которых заключены
в интервале скоростей от v до v+dv в расчете
на единицу этого интервала.
Для
этой функции верным утверждением
является…
![]()
при понижении температуры величина максимума уменьшается
![]()
при понижении температуры максимум кривой смещается влево
![]()
при понижении температуры площадь под кривой уменьшается
![]()

В трех одинаковых
сосудах находится одинаковое количество
газа, причем
Распределение
скоростей молекул в сосуде с температурой
Т3
будет описывать кривая...
![]()

3
![]()
1
![]()
2
![]()
На рисунке
представлен график функции распределения
молекул идеального газа по скоростям
(распределение Максвелла), где
–
доля молекул, скорости которых заключены
в интервале скоростей от v до v+dv в расчете
на единицу этого интервала.
Если,
не меняя температуры взять другой газ
сбольшей
молярной массой и таким же числом
молекул, то…
![]()
площадь под кривой увеличится
![]()
максимум кривой сместится влево в сторону меньших скоростей
![]()
величина максимума уменьшится
![]()
На рисунке
представлен график функции распределения
молекул идеального газа по скоростям
(распределение Максвелла), где
–
доля молекул, скорости которых заключены
в интервале скоростей от v до v+dv в расчете
на единицу этого интервала.
Если,
не меняя температуры взять другой газ
сменьшей
молярной массой и таким же числом
молекул, то…
![]()
величина максимума увеличится
![]()
максимум кривой сместится вправо в сторону больших скоростей
![]()
площадь под кривой уменьшится
![]()
На рисунке
представлен график функции распределения
молекул идеального газа по скоростям
(распределение Максвелла), где
–
доля молекул, скорости которых заключены
в интервале скоростей от v до v+dv в расчете
на единицу этого интервала.
Для
этой функции верным утверждением
является…
![]()
при изменении температуры положение максимума не изменяется
![]()
при изменении температуры площадь под кривой не изменяется
![]()
с уменьшением температуры величина максимума уменьшается
![]()
В
трех одинаковых сосудах при равных
условиях находится одинаковое количество
водорода, гелия и азота
Распределение
скоростей молекул гелия будет описывать
кривая...
![]()
3
2
1
![]()
8. Средняя энергия молекул
Средняя кинетическая
энергия молекулы идеального газа при
температуре T
равна
.
Здесь
,
где
,
и
–
число степеней свободы поступательного,
вращательного и колебательного движений
молекулы. При условии, что имеют место
только поступательное и вращательное
движение, для водяного пара (Н2O)
число i
равно …
![]()
8 6 3 5
![]()
Средняя кинетическая
энергия молекулы идеального газа при
температуре T
равна
.
Здесь
,
где
,
и
–
число степеней свободы поступательного,
вращательного и колебательного движений
молекулы. При условии, что имеют место
только поступательное и вращательное
движение, для водорода (Н2)
число i
равно …
![]()
7 52 8
![]()
Средняя кинетическая
энергия молекулы идеального газа при
температуре T
равна
.
Здесь
,
где
,
и
–
число степеней свободы поступательного,
вращательного и колебательного движений
молекулы. Для атомарного водорода числоi
равно …
![]()
15 7 3
![]()
Средняя кинетическая энергия молекул газа при температуре Т зависит от их структуры, что связано с возможностью различных видов движения атомов в молекуле. При условии, что имеют место только поступательное и вращательное движение, средняя энергия молекул азота (N2) равна …
![]()
![]()
![]()
![]()
![]()
![]()
9. Второе начало термодинамики. Энтропия. Циклы
На рисунке изображен
цикл Карно в координатах (T,S), где
S-энтропия. Изотермическое сжатие
происходит на этапе …

![]()
4 – 1
![]()
3 – 4
![]()
1 – 2
![]()
2 – 3
![]()
В процессе обратимого адиабатического охлаждения постоянной массы идеального газа его энтропия …
![]()
уменьшается не меняется увеличивается
![]()
В процессе изотермического отнятия тепла у постоянной массы идеального газа его энтропия …
![]()
уменьшается не меняется увеличивается
![]()
Энтропия изолированной термодинамической системы …
![]()
только постоянна не может убывать только увеличивается
![]()
В процессе обратимого изохорического нагревания постоянной массы идеального газа его энтропия …
![]()
увеличивается не меняется уменьшается
![]()
10. I начало термодинамики. Работа при изопроцессах
При адиабатическом расширении идеального газа …
![]()
температура и энтропия не изменяются
![]()
температура и энтропия возрастают
![]()
температура понижается, энтропия не изменяется
![]()
температура понижается, энтропия возрастает
![]()
Изменение внутренней энергии газа произошло только за счет работы сжатия газа в …
![]()
изотермическом процессе изобарном процессе
![]()
изохорном процессе адиабатическом процессе
![]()
Одноатомному
идеальному газу в результате изобарического
процесса подведено количество теплоты
.
На увеличение внутренней энергии газа
расходуется часть теплоты
,
равная
![]()
0,4 0,25 0,75 0,6
![]()
Диаграмма
циклического процесса идеального
одноатомного газа представлена на
рисунке. Отношение работы при нагревании
газа к работе при охлаждении равно…

![]()
1,5
![]()
5
![]()
3
![]()
2,5
![]()
Н
а
(P,V)-диаграмме изображены два циклических
процесса.
Отношение работ АI/АII,
совершенных в этих циклах, равно…
![]()
2
![]()
-1/2
![]()
-2
![]()
1/2
![]()
При адиабатическом расширении температура газа падает, при этом энтропия …
![]()
равна нулю увеличивается
![]()
не изменяется уменьшается
![]()
При изотермическом расширении давление газа растет, при этом энтропия …
![]()
увеличивается уменьшается
не изменяется равна нулю
![]()
Идеальный газ совершит большую работу, получив одинаковое количество теплоты, при…
![]()
адиабатном процессе изотермическом процессе
![]()
изобарном процессе изохорном процессе
![]()
Двухатомному
идеальному газу в результате изобарического
процесса подведено количество теплоты
.
На увеличение внутренней энергии газа
расходуется часть теплоты
,
равная …
![]()
0,25 0,29 0,75 0,71
![]()
При адиабатическом сжатии идеального газа …
![]()
температура возрастает, энтропия убывает
![]()
температура и энтропия возрастает
![]()
температура не изменяется, энтропия возрастает
![]()
температура возрастает, энтропия не изменяется
![]()
Изменение внутренней энергии газа произошло только за счет работы сжатия газа в …
![]()
изотермическом процессе изобарном процессе
![]()
изохорном процессе адиабатическом процессе
![]()
