- •Дисциплина «Физика» список литературы
- •Дополнительная
- •2. Учебные пособия
- •I. Учебная программа
- •Лекция №1
- •1. Современная картина строения физического мира.
- •1.5.Практическое использование элементарных частиц
- •1.1. Понятие о векторах и простейших действиях над ними
- •3.Метод размерных оценок в задачах физики
- •3.1. Введение в теорию размерных оценок. Преобразования подобия. Аффинные преобразования
- •3.2. Размерность и ее анализ. Алгоритм поиска размерных оценок
- •1.Размерность произвольной физической величины может быть лишь произведением степеней размерностей величин, принятых за основные.
- •2.Размерности обеих частей равенства, отражающего некоторую физическую закономерность, должны быть одинаковы.
- •3.3. Применение размерных оценок в механике. Примеры иллюстрации алгоритма для струны и маятника.
- •5. Мгновенная угловая скорость.
- •6. Связь линейной и угловой скоростей.
- •7. Модуль и направление углового ускорения.
- •8. Связь тангенциального и углового ускорения.
- •9. Мгновенное угловое ускорение.
- •5. Работа и энергия. Закон сохранения энергии
- •5.1. Работа и кинетическая энергия
- •5.2. Потенциальная энергия материальной точки во внешнем
- •5.3. О законе сохранения энергии и непотенциальных силах
- •5.4. Простые примеры
- •5.5. Равновесие и устойчивость
- •6.1. Особенности движения замкнутой системы из двух взаимодействующих материальных точек. Приведенная масса
- •6.2. Центр масс системы материальных точек
- •6.3. Потенциальная энергия взаимодействия. Закон сохранения
- •6.5. Упругие и неупругие соударения
- •Лекция 4
- •2. Избранные вопросы классической механики
- •2.1. Некоторые положения механики Ньютона.
- •2.2. Принципы механики Лагранжа.
- •2.3. Принцип Гамильтона.
- •7.1. Момент импульса и момент силы
- •7.3. Вращение абсолютно твердого тела вокруг неподвижной оси
- •Динамика твердого тела.
- •Свойства симметрии и законы сохранения. Сохранение энергии.
- •Сохранение импульса.
- •Сохранение момента импульса.
- •9.1. Принцип относительности Галилея
- •9.2. Законы механики в неинерциальных системах отсчета.
- •Некоторые задачи механики. Движение частицы в центральном поле сил.
- •2. Основные физические свойства и параметры жидкости. Силы и напряжения.
- •2.1. Плотность.
- •2.2. Вязкость.
- •2.3. Классификация сил.
- •2.3.1. Массовые силы.
- •2.3.2. Поверхностные силы.
- •2.3.3. Тензор напряжения.
- •8.3. Течение идеальной жидкости. Уравнение непрерывности
- •8.4. Архимедова сила. Уравнение Бернулли
- •8.5. Вязкость. Течение Пуазейля
- •1.4.1. Поток векторного поля.
- •2.3.4. Уравнение движения в напряжениях.
- •Уравнение Эйлера и Навье-Стока.
- •Специальная теория относительности.
- •10. Введение в релятивистскую механику
- •10.1. Постоянство скорости света для всех систем отсчета.
- •10.2. Следствия из преобразований Лоренца. Сокращение длины и замедление времени
- •10.3. Импульс и энергия в релятивистской механике
- •Относительность одновременности событий
- •Зависимость массы тела от скорости
- •Закон взаимосвязи массы и энергии
- •4.1.5. Релятивистская механика материальной точки
- •1.3. Фундаментальные взаимодействия
- •1.4. Стандартная модель и перспективы
- •1.1. Фермионы
- •1.2. Векторные бозоны
- •11.Элементарные частицы
- •11.1. Основные понятия и законы
- •11.1.1.Виды взаимодействий
- •11.1.2.Законы сохранения
- •11.2.Примеры решения задач
- •12.1. Основные свойства элементарных частиц.
- •12.2. Законы сохранения в микромире
- •12.3. Кварковая структура адронов
- •12.4. Электрослабое взаимодействие
- •Физика в конспективном изложении Содержание:
- •1. Вводные сведения - 6
- •Электричество – 49
- •9. Постоянное электрическое поле – 49
- •9.13.4.2. Теорема Гаусса для вектора - 78 10. Постоянный электрический ток – 79
- •10.7. Закон Ома для неоднородного участка цепи – 82 Магнетизм. Уравнения Максвелла – 83
- •11. Магнитное поле в вакууме – 83
- •11.11.3.1. Плотность энергии магнитного поля – 103 12. Магнитное поле в веществе – 103
- •Предисловие
- •1. Вводные сведения
- •1.1. Предсказание будущего - задача науки
- •1.2. Предмет физики
- •1.3. Физическая модель
- •1.4. Язык физики?
- •1.5. Экспериментальная и теоретическая физика
- •Физические основы механики
- •3.1.3. Абсолютно твердое тело
- •3.2. Тело отсчета
- •3.3. Система отсчета
- •3.4. Положение материальной точки в пространстве
- •3.10.1. Нормальное и тангенциальное ускорение
- •4. Динамика материальной точки
- •4.6.1. Система си (System international)
- •4.6.1.1. Размерность силы
- •5.3. Работа
- •5.6.1. Консервативность силы тяжести
- •5.6.2. Неконсервативность силы трения
- •5.7. Потенциальная энергия может быть введена только для поля консервативных сил
- •5.8.Закон сохранения механической энергии
- •6. Кинематика вращательного движения
- •6.1. Поступательное и вращательное движение
- •6.2. Псевдовектор бесконечно малого поворота
- •6.5. Связь линейной скорости материальной точки твердого тела и угловой скорости
- •8. Элементы специальной теории относительности
- •8.2. Принцип относительности Галилея:
- •8.3. Неудовлетворительность механики Ньютона при больших скоростях
- •8.5.1. Вывод преобразований Лоренца
- •8.6. Следствия из преобразований Лоренца
- •9.3. Электрическое поле
- •9.3.6. Принцип суперпозиции электрических полей
- •9.3.7. Напряженность поля точечного заряда
- •9.3.8. Линии напряженности
- •9.3.9. Линии напряженности точечных зарядов
- •9.4.4.1. Поле равномерно заряженной бесконечной плоскости
- •9.4.4.3. Поле однородно заряженного бесконечного цилиндра
- •9.9. Проводник в электрическом поле
- •9.10. Электроемкость уединенного проводника
- •9.11. Электроемкость конденсатора
- •9.12. Энергия электрического поля
- •9.12.1. Плотность энергии электрического поля в вакууме
- •9.13. Электрическое поле в диэлектрике
- •9.13.1. Диэлектрик?
- •9.13.1.1. Два типа диэлектриков - полярные и неполярные
- •9.13.2. Поляризованность диэлектрика (вектор поляризации) - это дипольный момент единицы объема:
- •9.13.4.1. Плотность энергии электрического поля в диэлектрике
- •10.4. Закон Ома для участка цепи
- •10.5. Закон Ома в дифференциальной форме
- •10.6. Закон Джоуля-Ленца в дифференциальной форме
- •Магнетизм. Уравнения Максвелла
- •11.5.6. Магнитное поле тороида
- •11.6. Закон Ампера
- •11.7. Сила Лоренца - это сила, действующая со стороны магнитного поля на движущийся в нем заряд
- •11.7.1. Движение заряженной частицы в однородном магнитном поле
- •11.8. Рамка с током в магнитном поле
- •11.11.1. Потокосцепление
- •11.11.2. Индуктивность соленоида
- •11.11.3. Энергия магнитного поля
- •12. Магнитное поле в веществе
- •12.2. Классификация магнетиков
- •13. Уравнения Максвелла
- •13.3. Система уравнений Максвелла в интегральной форме
- •13.4. Система уравнений Максвелла в дифференциальной форме
Зависимость массы тела от скорости
Зависимость свойств пространства и времени от движения системы отсчета приводит к тому, что сохраняющейся при любых взаимодействиях тел является величина
,
называемая релятивистским импульсом, а не классический импульс.
Классический закон сложения скоростей и классический закон сохранения импульса являются частными случаями универсальных релятивистских законов и выполняются только при значениях скоростей, значительно меньших скорости света в вакууме.
Релятивистский импульс тела можно рассматривать как произведение релятивистской массы т тела на скорость его движения. Релятивистская массат тела возрастает с увеличением скорости по закону
,
где
— масса покоя тела,
— скорость его движения.
Возрастание массы
тела с увеличением скорости приводит
к тому, что ни одно тело
с массой покоя, не равной нулю, не может
достигнуть скорости, равной скорости
света в вакууме, или превысить эту
скорость. Скорость
,
большая
,
приводит для обычных частиц к мнимой
массе и мнимому импульсу, что физически
бессмысленно. Зависимость массы от
скорости начинает сказываться лишь при
скоростях, весьма близких к
(См
рисунок №2). Приведённые в этом пункте
формулы неприменимы к фотону, так как
у него отсутствует масса покоя (
).
Фотон всегда движется со скоростью,
равной скорости света в вакууме, и
является ультрарелятивистской частицей.
Тем не менее, отсюда не следует постоянство
скорости света во всех веществах.
При
выражение для импульса переходит в то,
которое используется в механике Ньютона
,
где под
понимается масса покоя(
),
ибо при
различие
и
несущественно.
Рисунок
№2
Закон взаимосвязи массы и энергии
Полная энергия Е
тела (или частицы) пропорциональна
релятивистской массе
(закон
взаимосвязи
массы и энергии):
,
где с - скорость
света в вакууме. Релятивистская масса
зависит от скорости
,
с которой тело (частица) движется в
данной системе
отсчета. Поэтому
полная энергияразлична
в разных системах отсчета.
Наименьшей
энергией
тело
(частица) обладает в системе отсчета,
относительно которой оно покоится(
).
Энергия
называетсясобственной энергией илиэнергией покоя тела (частицы):
.
Энергия
покоя тела является его внутренней
энергией Она состоит из суммы энергий
покоя всех частиц тела
,
кинетической энергии всех частицотносительно общего
центра масс и потенциальной энергии их
взаимодействия. Поэтому
и![]()
где
—
масса покоя
-й частицы.
В релятивистской
механике несправедлив закон сохранения
массы покоя. Например, масса покоя
атомного ядра меньше, чем сумма
собственных масс частиц,входящих
в ядро. Наоборот масса
покоя
частицы, способной к самопроизвольному
распаду, больше суммы собственных масс
продуктов распада
и
:
.
Несохранение
массы покоя не означает нарушения
закона сохранения массы вообще. В теории
относительности справедлив закон
сохранения релятивистской массы. Он
вытекает из формулы закона взаимосвязи
массы и энергии
.
В изолированнойсистеметел сохраняется полная
энергия. Следовательно,
сохраняется и релятивистская масса.
Втеории относительности
законы сохранения энергии и релятивистской
массы взаимосвязаны и представляют
собой единый закон сохранения массы и
энергии. Однако изэтого закона отнюдь
не следует возможность преобразования
массы в энергию и обратно. Масса и энергия
представляютсобой
два качественно различных свойства
материи, отнюдь не “эквивалентных”
друг другу. Ни один из известных опытных
фактов не дает оснований для вывода о
“переходе массы в энергию”. Превращение
энергии системы из одной формы в другую
сопровождается превращением массы.
Например, в явлении рождения и уничтожения
пары электрон — позитрон,
в полном соответствии с законом
сохранения релятивистской массы и
энергии, масса не переходит в энергию.
Масса покоя частиц (электрона и позитрона)преобразуется
в массу фотонов, то есть в массу
электромагнитного поля.
Гипотеза Эйнштейна о существовании собственной энергии тела подтверждается многочисленными экспериментами. На основе использования закона взаимосвязи массы и энергии ведутся расчеты выхода энергии в различных ядерных энергетических установках.
