
- •1. Изохорный процесс изменение состояния идеального газа.
- •4. Адиабатный пр-с изм сост ид газа.
- •7. PV диаграмма водяного пара.
- •12. Изобарный пр-с изм сост водяного пара.
- •13. Изотермический пр-с изм сост водяного пара.
- •17. Цикл Карно во влажном воздухе и его недостатки. Pv,ts диаграммы
- •18. Цикл Ренкина. Схема. Диаграммы.
- •19. Полезная работа цикла Ренкина. Работа питательного насоса. Термический кпд цикла Ренкина.
- •20. Влияние параметров пара на термодинамический кпд цикла Ренкина.Ts ,hS диаграммы.
- •21.Цикл Ренкина с промежуточным перегревом пара.
- •22.Принципиальная схема действующей тэц.
- •26. Принципиальная схема прямоточных котлов.
- •27. Принципиальная схема современного парового котла. Ее работа.
- •28 Цикл паровой компрессорной хол уст-ки
- •29 Абсорбционные хол уст-ки
- •30 Источники геотермальной энергии
- •31 ГеоТэс на сухом паре
- •32 ГеоТэс с бинарным циклом
- •34 Солнечное излучение
- •35 Солнечн эл ст башенного типа с т/д циклом
- •36 Солн эл ст с пцк солн излучения
- •37 Накопитель солн энергии, осн на синтезе аммиака
- •38 Солн фотоэл-кие преобразователи
- •39 Энергия с косм электростанций
- •41.Принципиальная схема одноконтурной аэс, ее работа. Достоинства и недостатки.
- •42.Принципиальная схема двухконтурной аэс, ее работа.
- •43.Принципиальная схема энергоблока рбмк – 1000, описание ее работы.
- •44.Физические основы работы пэс. Преимущества и недостатки пэс, их воздействие на окружающую среду.
- •45.Состояние и перспективы использования пэс.
- •46.Физические основы работы океанических гидроэлектростанций на основе морских течений. Основные типы турбин, требования к ним предъявляемые.
- •47.Преобразование энергии морских течений в электрическую энергию. Схема роторной электростанции. Достоинства и недостатки огэс.
- •48.Состояние и перспективы огэс.
- •49.Назначение гидроэнергетической установки, основные типы.
- •50.Основные схемы использования водной энергии. Их принципиальные схемы.
- •51.Физические основы работы ветроэнергетических установок. Величина мощности, развиваемой потоком воздуха. Основные направления развития ветроэнергетики.
- •52.Классификация вэу. Характерные рабочие скорости ветра. Энергетические характеристики вэу.
- •53.Технико-экономические показатели вэс в России и зарубежных странах. Экономическая эффективность и экологичность вэс.
29 Абсорбционные хол уст-ки
Эти установки не используют компрессор, в основе их работы абсорбция – поглощение всей массы одного тела другим. Используется 2 жидкости, имеющие разные t насыщения и легко растворяются др в др. Легкокипящая жидкость выступает в роли хладоагента, а жидкость с более высокой t – абсорбент.
1-парогенератор,
2-конденсатор,
3,7-дроссель,
4-теплообменник,
5-абсорбер,
6-насос.
В парогенераторе 1 в рез подвода q1, хладоагент выпаривается из адсорбента в виде сухого насыщенного пара. В конд-ре 2 он конденсируется, отдавая кол-во теплоты q2 охлажденной воде. В дросселе 3 хладоагент дросселируется (Р↑, t↓). В теплообменнике 4 хладоагент забирает кол-во теплоты q2 от охлажденных тел. В адсорбере 5 хладоагент соединяется с адсорбентом, поступившим через дроссель 7. Смесь в парогенератор 1 подается насосом 6.
30 Источники геотермальной энергии
Выделение тепла из недр земли связано с
Радиоактивный распад элементов: элементы с периодом полураспада меньшим периода формирования земли распались при первоначальном разогреве планетного вва
Воздействие притяжения солнца и луны, кот приводит к земным приливам и торможению земли
Гравитационная деформация материала земли с образованием плотного ядра и менее плотной оболочки
Текстолитические процессы, вызывающие вертикальные и горизонтальные смещения крупных блоков земной коры и ее упругие деформации
Хим превращения в недрах земли
t в ядре Земли порядка 4000, в пов-тях сравнительно близких к земной коре (2900 км от пов-ти) t=1000.
Передача тепла осущ через твердые породы суши и океанское дно теплопроводностью и небольшая часть за счет конвективного теплообмена. Средний поток геотермального тепла через земную пов-ть составляет 0,06 Вт*м2 (темп градиент 30 К*км). Если 300/км, то мощность геотерм-й тепловой электростанции 500 Вт*м2.
Имеются р-ны с повышенным градиентом температуры, где ср поток геотерм тепла сост 10-20 Вт*м2. Это позволяет реализовать геотерм станции с мощностью до 100 МВт*м2.
Кач-во геотерм энергии низкое, поэтому геотерм-е источники тепла используют как для выработки электроэнергии, так и для выработки тепла.
После предварительного дробления пород вода нагревается через питательную скважину, фильтруется через скальные породы и на глубине 5 км нагревается до t=2500 и через водозаборную скважину выходит на пов-ть.
Пригодными для практич использования явл месторождения 1) сухого пара (встреч редко), 2) влажного пара (чаще) – США, Камчатка 3) горячая термальная вода (ресурсов много) – исп для теплоснабжения 4) теплота сухих горных пород (ресурсов оч много, но технологии в стадии освоения)
По степени минерализации:
Термальные воды с низкой минерал-цией (до 10 г/л), можно исп-ть без предварительной обработки
Со средней мин-цией (10-35 г/л) – треб-ся очистка от солей
С высокой мин-цией (35-200 г/л и более) исп в 2х контурных системах
Возд-е на окр среду:
Повышенный уровень шума на выходе из скважин
Загрязнение водоемов при сбросе в них термальных вод с повышенным содержанием солей
Загрязнение окр воздуха попутными газами (сероводород, аммиак).