Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методички по нормальной физиологии / Физиология кровообращения

.Pdf
Скачиваний:
702
Добавлен:
30.03.2015
Размер:
7.77 Mб
Скачать

Базальный сосудистый тонус

Даже при отсутствии нервных влияний на сосуды в случае их полной денервации продолжает сохраняться остаточный сосудистый тонус, получивший название базального тонуса. В основе базального тонуса лежит миогенный механизм. Во-первых, это способность гладкомышечных клеток сосудов к спонтанной биоэлектрической активности, т.е. к автоматии, и распространению возбуждения от клетки к клетке через плотные контакты. Это приводит к их сокращению и сужению просвета сосуда. Вторая причина это деполяризация и сокращение гладкомышечных клеток под влиянием растягивающего действия давления крови на стенку сосуда. Базальный тонус наиболее выражен в сосудах органов с высоким уровнем метаболизма в сосудах почек, сердца и головного мозга. На него влияют гуморальные факторы. Клеточные метаболиты углекислый газ, органические кислоты снижают базальный тонус и расширяют сосуды, а

вазопрессин, ангиотензин, адреналин, циркулирующие в крови,

увеличивают базальный тонус и сосуды суживаются. Благодаря наличию базального тонуса и способности его к местной саморегуляции сосуды указанных областей могут поддерживать объёмную скорость кровотока на постоянном уровне независимо от колебаний системного артериального давления.

Рефлекторная регуляция артериального давления

В соответствии с формулой P=Q×R система, осуществляющая контроль артериального давления, должна регулировать величину минутного объёма сердца (Q) и периферического сосудистого сопротивления (R). Такая регуляция осуществляется с помощью специального нервнорефлекторного механизма, называемого прессорецептивным (барорецептивным)

рефлексом, информационная часть которого представлена собственными сосудистыми барорецепторами, расположенными в дуге аорты и в каротидном синусе (рис.22).

Рецепторы реагируют на степень растяжения стенки сосуда пульсовыми или нарастающими колебаниями кровяного давления. В ответ на каждый систолический скачок давления барорецепторы генерируют залп импульсов, который затухает при диастолическом снижении давления. Чем выше давление крови в этих сосудах, тем сильнее раздражаются барорецепторы, и частота импульсов, посылаемых в сосудодвигательный центр, возрастает, и наоборот. От каротидного синуса в продолговатый мозг импульсы идут по чувствительному синокаротидному нерву (нерв Геринга), а от дуги аорты по аортальному нерву, он же депрессорный нерв (нерв Циона-Людвига). Импульсы направляются в вазомоторный центр, расположенный на дне 4-го желудочка продолговатого мозга, который был открыт Ф.В. Овсянниковым (1871) путём перерезок у животных ствола мозга на разных уровнях. Если перерезка производилась выше четверохолмия, то АД не изменялось, если между продолговатым и спинным, то АД снижалось до 70 мм рт.ст. Это

45

говорит о том, что сосудодвигательный центр располагается в продолговатом мозге и находится в состоянии тонической активности. В дальнейшем было установлено, что вазомоторный центр состоит из прессорной, депрессорной и кардиоингибирующей зон.

Рис.22. Дуга барорецептивного рефлекса.

Прессорный отдел (на рис.22 – П) находится в состоянии постоянного возбуждения и посылает импульсы к периферическим сосудам через симпатические центры боковых рогов грудных сегментов спинного мозга и периферические симпатические нервы. Увеличение активности прессорного отдела вызывает повышение периферического сосудистого тонуса и увеличение системного артериального давления. Уменьшение его активности вызывает расширение сосудов и снижение давления.

Депрессорный отдел (на рис.22 – Д) является центром, куда поступают импульсы непосредственно от сосудистых барорецепторов, под влиянием которых возрастает его активность. Собственных эфферентных связей с периферическими сосудами депрессорный отдел не имеет, и влияние на артериальное давление он может оказывать только угнетая активность прессорного отдела через тормозные вставочные интернейроны, что приводит к расширению сосудов и снижению артериального давления. Кроме того, депрессорный отдел связан с кардиоингибирующим центром продолговатого мозга, представленным вегетативным ядром блуждающего нерва (на рис.19 – В). Импульсы, идущие от барорецепторов, одновременно с

46

депрессорным центром повышают активность и центра вагуса, что

приводит к урежению

ритма сердца, уменьшению его выброса и снижению

общего артериального давления.

 

 

 

Сосудодвигательный

центр продолговатого

мозга

в реакциях целого

организма выступает

в тесном взаимодействии с гипоталамусом, базальными

ядрами и корой больших полушарий.

Он

осуществляет срочные ответы

кровеносной системы, связанные с

усиленной

мышечной работой,

гипоксией, гиперкапнией и ацидозом.

 

 

 

Эфферентными нервами прессорецептивного рефлекса, являются постганглионарные симпатические волокна, изменяющие просвет артерий и артериол, и волокна блуждающего и симпатического нервов, регулирующие

величину сердечного выброса.

 

 

 

 

Рассмотренный

рефлекторный механизм

регулирует

АД

по

“рассогласованию” с участием

отрицательной обратной связи: сосудистые

барорецепторы

регистрируют

отклонения АД

от заданной

величины, а

сосудодвигательный центр включает компенсаторные реакции, возвращающие это давление к норме. Прессорецептивный рефлекс является срочным регуляторным механизмом, восстанавливающим давление в случае его внезапного увеличения, как, например, при эмоциональном возбуждении, или в случае его снижения, например, при кровопотере.

На практическом занятии проводится экспериментальный анализ дуги прессорецептивного рефлекса. Опыт выполняется на кролике под наркозом с отпрепарированным сосудисто-нервным пучком на шее, в составе которого проходят сонная артерия, блуждающий нерв и чувствительный депрессорный нерв. Изменения артериального давления записываются на движущейся ленте кимографа. Регистрация давления осуществляется прямым способом с помощью манометра, соединённого с просветом сонной артерии. Запись исходного артериального давления представлена кривой, на которой различают волны трёх порядков (рис.23). Волны первого порядка (1) самые мелкие, пульсовые, связаны с сокращением и расслаблением левого желудочка. Волны второго порядка (2), более крупные, объединяющие несколько пульсовых волн, связаны с фазами дыхания. Во время глубокого вдоха, когда внутриплевральное давление становится более отрицательным, внутригрудные сосуды расширяются, в них эффективно подсасывается кровь из предшествующих сосудов и давление в артериальной части снижается. При выдохе, когда внутриплевральное давление возрастает, отток крови из артериальной части уменьшается, и это приводит к временному увеличению давления крови. Волны третьего порядка (3) связаны с естественными колебаниями тонуса сосудодвигательного центра.

47

Рис.23. Схема кривой изменения кровяного давления.

Далее в опыте изучаются изменения артериального давления, возникающие в ответ на воздействия на различные части рефлекторной дуги, которые описаны ниже. Первое воздействие оказывается на афферентную часть рефлекторной дуги, т.е. на чувствительные нервы. Для этого перерезается депрессорный нерв и его центральный конец, идущий в головной мозг, раздражается электрическим током. При этом происходит снижение общего артериального давления вследствие повышения активности депрессорного центра, который угнетает тонус сосудосуживающего центра, вследствие чего сосуды внутренних органов расширяются. Одновременно увеличивается тонус ядра блуждающего нерва. В результате сердечная деятельность тормозится и его минутный объём падает. В итоге периферическое давление понижается. Если перерезать депрессорные нервы с обеих сторон,

возникает устойчивое повышение АД, которое развивается вследствие того,

что в депрессорный отдел

перестают поступать импульсы от

барорецепторов, что приводит

к снижению активности депрессорного

отдела и уменьшению его угнетающего действия на прессорный отдел. Активность последнего возрастает и периферические сосуды сужаются.

Одновременно снижается тонус блуждающего нерва, уменьшается его тормозное влияние на сердце и сердечный ритм возрастает. Увеличение периферического сопротивления и возрастание минутного объёма сердца в итоге приводят к подъёму общего АД.

Если наложить зажим на общую сонную артерию ниже каротидного синуса, прекратив тем самым доступ крови в синокаротидную рефлексогенную зону и вызвав там местное понижение давления крови, то в ответ мы будем наблюдать рефлекторное увеличение общего системного АД. Причиной этому будет уменьшение импульсации, идущей от барорецепторов в депрессорный отдел, снижение его ингибирующего действия на прессорный отдел, увеличение активности последнего и сосудосуживающий эффект на периферии. Одновременно понизится тонус ядра вагуса и увеличится работа сердца. Такой же рефлекторный механизм вызовет нормализацию общего артериального давления в случае острой кровопотери.

Необходимо отметить, что в аортальной и каротидной рефлексогенных

зонах, наряду с

барорецепторами находятся хеморецепторы, которые

располагаются в

специальных аортальных и каротидных тельцах. Эти

рецепторы чувствительны к увеличению концентрации углекислого газа, ионов водорода и к снижению концентрации кислорода в артериальной

48

крови. От этих рецепторов возбуждение передаётся по центростремительным нервным волокнам в составе синокаротидного и аортального нервов в сосудодвигательный центр, где происходит увеличение тонуса его прессорного отдела. В результате периферические сосуды суживаются, и общее давление крови повышается. Одновременно происходит возбуждение и расположенного рядом дыхательного центра, деятельность которого направлена на нормализацию газового состава крови. Рассмотренные реакции показывают, что возбуждение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные реакции, а

возбуждение барорецепторов депрессорные реакции.

Рассмотренный выше барорецептивный рефлекс, восстанавливающий артериальное давление при его отклонениях, является кратковременным срочным адаптивным нервно-рефлекторным механизмом. Но помимо этого для регуляции артериального давления существуют регуляторные механизмы

средней срочности и длительного действия. К механизмам средней срочности необходимо отнести изменения транскапиллярного обмена.

При увеличении

артериального или

венозного давления

возрастает

гидростатическое

давление в капиллярах, в результате повышается

фильтрация жидкости из капилляров

в интерстициальное пространство, и

внутрисосудистый объём и артериальное давление снижается. Обратная реакция происходит при падении артериального давления. К механизмам средней срочности относится специальная гуморальная ренинангиотензиновая система. При снижении системного артериального давления уменьшается кровоснабжение почек, что вызывает увеличение секреции почками ренина, под влиянием которого в плазме крови образуется ангиотензин, оказывающий сильное сосудосуживающее действие. Такая реакция достигает максимума в течение 20 мин. и затем продолжается в течение длительного времени.

К регуляторным механизмам длительного действия, относятся физиологические механизмы, способные регулировать объём крови и объём интерстициальной жидкости. Речь идёт о системе регуляции водноэлектролитного баланса организма, главным органом которой является почка, на которую действуют гормоны вазопрессин и альдостерон, регулирующие выведение из организма воды и солей. Подробное изучение этой системы будет в разделе «Физиология почки и водно-солевого обмена».

Гуморальные влияния на сосуды Главными сосудосуживающими веществами являются гормоны

мозгового вещества надпочечников адреналин и норадреналин. Для взаимодействия с этими гормонами в гладкомышечных клетках артериол существуют два типа мембранных рецепторов: альфа- и бетаадренорецепторы. Норадреналин действует на артериолы через альфаадренорецепторы, возбуждение которых сопровождается сокращением гладкомышечных клеток сосудов. Адреналин действует на альфа и бета-

49

адренорецепторы. В тех сосудах, где преобладают альфа-адренорецепторы, адреналин так же, как норадреналин, вызывает суживающий эффект (артериолы кожи, желудочно-кишечного тракта и лёгких). В тех же артериолах, где преобладают бета-рецепторы, адреналин вызывает расслабление гладкой мускулатуры и расширение сосудов (артериолы скелетных мышц, коронарные артерии).

Вазопрессин, гормон нейрогипофиза, оказывает суживающее действие на артериолы и капилляры. Ангиотензин оказывает сильное суживающее действие на артерии и менее сильное на вены, стимулирует центральные и периферические симпатические структуры. В результате периферическое сопротивление и кровяное давление повышаются.

Серотонин содержится в больших количествах во внутренних органах и тромбоцитах. Серотонин, в зависимости от класса серотонинергических мембранных рецепторов, может вызывать как вазоконстрикцию, так и вазодилатацию.

Сосудорасширяющие вещества Гистамин выделяется базофилами, тучными клетками, при реакциях

антиген-антитело. Его много в коже и слизистых оболочках. Оказывает местное расширение артериол и венул и резко увеличивает проницаемость капилляров.

Брадикинин, образующийся из кининогена плазмы под влиянием калликреина, оказывает выраженных сосудорасширяющий эффект и увеличивает проницаемость капилляров.

Гормоноподобные вещества простагландины, образующиеся практически во всех органах и тканях, существуют в виде нескольких групп. Группа ПГА-1. ПГА-2 вызывают расширение артерий особенно чревной области. В мозговом веществе почек выделен ПГА-2 под названием медуллин. Он снижает артериальное давление и увеличивает почечный кровоток, а также выделение почками воды, натрия и калия. Простогландины группы Е также вызывают расширение сосудов и тормозят выделение норадреналина из окончаний симпатических нервов. Простагландины группы F оказывают противоположное - сосудосуживающее действие.

Особенности регуляции артериального давления у детей разного возраста.

Рефлекторные механизмы регуляции уровня артериального давления осуществляются путем изменения работы сердца и величины периферического сопротивления. Основными рефлексогенными зонами, в которых локализованы баро- и хеморецепторы являются разветвления сонной артерии и дуга аорты. У взрослых раздражение прессорецепторов этих зон приводит к снижению артериального давления (депрессорный эффект) за счет усиления тонического влияния блуждающего нерва на сердце и снижения прессорного воздействия сосудосуживающего центра на сосуды.

У новорожденных животных (обезьяны) уже функционируют прессорецепторы синокаротидной зоны. Частота импульсов от них зависит от

50

величины артериального давления, но раздражение нервов, идущих от рецепторов вызывает слабовыраженное снижение ситемного артериального давления. Депрессорный эффект с аортальной рефлексогенной зоны отсутствует. Он появляется позже, к 3-4 месяцам, одновременно с формированием тонической активности блуждающего нерва на сердце.

Нестабильны эффекты с хеморецепторов каротидного тельца на гиперкапнию и гипоксию: они не постоянны, либо очень слабые. Только к концу первого года жизни при раздражении хеморецепторов появляется хорошо выраженное повышение артериального давления. Начинают работать регуляторные механизмы перераспределения кровотока при переходе от покоя к двигательной активности.

Сосудодвигательные реакции на гуморальные раздражители появляются раньше, чем на нервные. Так, еще в периоде внутриутробного развития адреналин суживает прекапиллярные сфинктеры.

У новорожденных и детей раннего возраста во много раз выше активность ренин-ангиотензинной системы, чем у взрослых. Полагают, что эта система играет у них немаловажную роль в повышении сосудистого тонуса.

Вопросы для самоконтроля

1.Какое физиологическое значение имеет периферический сосудистый тонус?

2.От каких величин зависит уровень общего артериального давления?

3.Какими нервными волокнами представлена афферентная часть барорецептивного рефлекса?

4.Из каких частей состоит сосудодвигательный центр?

5.Какие нервные волокна являются сосудосуживающими?

6.Какие нервные волокна выполняют функцию сосудорасширителей?

7.Каково происхождение базального сосудистого тонуса?

8.Перечислите сосудосуживающие и сосудорасширяющие гуморальные вещества.

2. 3 КРОВООБРАЩЕНИЕ В КАПИЛЛЯРАХ

Капилляры наиболее важный отдел кровеносной системы, т.к. именно в них осуществляется обмен между кровью и интерстициальной жидкостью. Совокупность сосудов от артериол до венул составляет микроциркуляторное

русло.

В него входят

метартериола, магистральные капилляры и

капиллярные сети (рис.24).

 

51

Рис.24. Схема микроциркуляторного русла.

Обменные процессы в капиллярах. Наибольшую роль в обмене жидкостью и растворёнными веществами между кровью и межклеточной жидкостью играет двусторонняя диффузия, которая осуществляется под действием диффузионных, фильтрационных и осмотических сил. Скорость диффузии очень высока. Таким образом, жидкая часть плазмы и межклеточная жидкость постоянно «перемешиваются». Водорастворимые вещества, такие как ионы и глюкоза, диффундируют через заполненные водой поры в мембране эндотелиальных клеток. Если принять проницаемость капиллярной стенки для воды за 1, то относительная проницаемость для глюкозы составит 0,6, а для белка альбумина 0,0001. Крупные молекулы могут переноситься путём пиноцитоза. Через стенку капилляра свободно диффундируют жирорастворимые вещества, например, спирт, а также кислород и углекислый газ.

Закономерности, обусловливающие обмен жидкости между капиллярами и интерстициальным пространством описаны Старлингом. Основной силой, под влиянием которой происходит переход жидкой части плазмы через капиллярную стенку в окружающие ткани, является давление крови в артериальной части капилляра (гидростатическое давление). Ргк = 32 мм рт. ст. Ему противодействует онкотическое давление белков плазмы Рок = 25 мм рт.ст. На величину фильтрации влияют также гидростатическое и онкотическое давление интерстициальной жидкости окружающей капилляр (Ргт = 3 мм рт.ст. и Рот = 5 мм рт.ст.). Гидростатическое давление в интерстиции препятствует, а онкотическое способствует фильтрации из капилляра.

Pф = Pгк – Pок – Pгт + Pот

Рф фильтрационное давление, Ргк гидростатичекое давление крови, Рок онкотическое давление крови, Ргт гидростатическое давление интерстициальной жидкости, Рот онкотическое давление в окружающих тканях.

52

Таким образом, эффективное фильтрационное давление на артериальном конце капилляра составляет: Рф = 32 25 3 + 5 = 9 мм рт.ст.

При прохождении по капилляру кровь тратит энергию на преодоление сопротивления, и на венозном конце капилляра давление крови снижается до 15 мм рт.ст., а онкотическое давление плазмы почти не меняется. В результате создаётся реабсорбционная сила, под влиянием которой профильтровавшаяся жидкость возвращается из интерстициального пространства в капилляр:

P реабс. = 15 25 3 + 5 = 8 мм рт.ст.

Под действием фильтрационного давления примерно 0,5% объёма плазмы, протекающей через каждый капилляр, переходит в интерстициальное пространство. Средняя скорость фильтрации во всех капиллярах составляет 14мл в минуту или 20 литров в сутки. Так как реабсорбционное давление несколько меньше, чем фильтрационное, только 90% от профильтровавшегося объёма плазмы реабсорбируется в венозном конце капилляра. Остальная жидкость удаляется из интерстициального пространства через лимфатические сосуды.

Рис.25. Схема обмена жидкостью между кровеносным капилляром и

межклеточным пространством.

Фильтрация возрастает при увеличении артериального давления и при снижении онкотического давления плазмы и наоборот снижается при уменьшении давления крови или возрастании онкотического давления белков плазмы.

Регуляция кровообращения в капиллярах

53

Прежде всего, необходимо отметить важную особенность работы капилляров, которая заключается в том, что из общего числа имеющихся капилляров в каждый данный момент функционирует только часть. В связи с тем, что общая ёмкость всех капилляров составляет около 7 литров, тогда как циркуляторный объём крови значительно меньше 5 литров, часть капилляров закрыта и выключена из кровообращения, а кровь протекает лишь по “дежурным” капиллярам. И эти дежурные капилляры работают в режиме «открытие-закрытие», который регулируется местными продуктами обмена. Такая особенность работы капилляров была названа исследователем капиллярного кровообращения Крогом как «мерцание» капилляров. В период интенсивной деятельности органов, когда обмен в них увеличивается, количество функционирующих капилляров значительно возрастает. Для

увеличения

кровотока

в капиллярах

имеет большое

значение

метаболическая ауторегуляция, которая

приспосабливает

местный

кровоток

к функциональным потребностям ткани. При усиленной функции

любого органа или ткани

усиливается метаболизм и повышается количество

продуктов обмена (метаболитов) оксида углерода и угольной кислоты, АДФ, АМФ, фосфорной и молочной кислоты и др. Увеличивается осмотическое давление, уменьшается величина рН в окружающей жидкости. Все эти факторы оказывают расслабляющее действие на гладкомышечные клетки артериол и прекапиллярных сфинктеров. В результате число открытых капилляров увеличивается. В скелетной мышце при максимальной работе число функционирующих капилляров возрастает в 100 раз.

Регуляция капиллярного кровообращения осуществляется также за счёт влияния нервной системы и гормонов на артерии и артериолы. А сужение или расширение этих сосудов влияет на кровенаполнение капилляров.

В последние годы установлено, что эндотелий сосудов синтезирует и выделяет факторы, активно влияющие на тонус сосудистой стенки. Под влиянием химических раздражителей, приносимых с кровью, или под

влиянием

механического растяжения стенки эндотелиоциты выделяют

вещества,

которые вызывают

сокращение или

расслабление

гладкомышечных клеток. Одним

из мощных факторов расслабления является

оксид азота (NO), образующийся

при ферментативном окислении L-аргинина

во многих

органах и тканях. Он

изменяет проницаемость

капилляров и

предупреждает тромбообразование. Оксид азота также является важным медиатором центральной и периферической нервной системы, принимает участие в осуществлении центрального контроля за системным кровяным давлением: введение его в желудочки головного мозга вызывало резкое снижение артериального давления.

Вопросы для самоконтроля

1.Какую функцию выполняют капилляры.

2.Какую роль играет гидростатическое и онкотическое давление крови в капилляре в механизме образования тканевой жидкости?

54