Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методички по нормальной физиологии / Физиология кровообращения

.Pdf
Скачиваний:
702
Добавлен:
30.03.2015
Размер:
7.77 Mб
Скачать

Физиологические механизмы регуляции минутного объема сердца

 

Внутриклеточные

 

 

Внутрисердечные

 

Внесердечные нейрогуморальные

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Гетеро-

 

Гомео-

 

 

Автономная

 

 

Симпатическая

 

Пара-

 

Гуморальная

метрическая

 

метрическая

 

 

нервная

 

 

нервная

 

симпатическая

 

регуляция

саморегуляция

 

саморегуляция

 

 

саморегуляция

 

 

регуляция

 

нервная

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

регуляция

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

силы

силы

 

силы

 

Изменение

 

Хроно-

 

Адреналин ЧСС

сокращения

сокращения

 

сокраще-

 

частоты

и

 

Ино-

 

Ангиотензин II силы

при

при

 

ния при

 

силы

при

 

Дромо-

 

Тироксин ЧСС

 

 

различном

 

 

 

венозного

артериального

 

учащении

 

 

 

Батмотропные

 

 

 

 

наполнении

 

 

 

возврата

сопротивления

 

ритма

 

 

влияния

 

 

 

 

камер сердца

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Вопросы для самоконтроля 1.Что такое минутный объём сердца? Чему он равен в покое и при

физической нагрузке? 2.В чём заключается гетерометрическая саморегуляция сердца и её физиологическое значение?

3.Кем и когда было открыто влияние блуждающего и симпатического нервов на сердце?. 4.Перечислите типы влияний блуждающего и симпати ческого нервов на сердце.

5.Каким экспериментом можно доказать наличие тонуса блуждающего нерва?

6.Как и почему изменится мембранный диастолический потенциал в клетках синоатриального узла под влиянием ацетилхолина?

7.Как осуществляется рефлекторное изменение сердечной деятельности при раздражении барорецепторов дуги аорты в случае увеличения общего артериального давления?

2.1 ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ.

Классификация сосудов. По функциональному значению в сосудистой системе можно выделить следующие отделы:

1.Компрессионный отдел - аорта и крупные артерии, сосуды эластического типа с упруго-растяжимыми стенками. Указанные сосуды растягиваются поступающей из сердца кровью во время систолы, а во время диастолы спадаются, тем самым поддерживая давление крови и подталкивая её в артериолы и капилляры.

2.Резистивный отдел - артериолы, сосуды с хорошо выраженной мышечной стенкой. Артериолы ввиду малого их диаметра создают основное сопротивление току крови и не дают ей быстро оттекать в дистальные отделы. Это позволяет поддержать артериальное давление на достаточном уровне даже во время диастолы.

3.Обменный отдел - капилляры, где происходит обмен газами, жидкостью и другими веществами между кровью и тканями.

4.Шунтирующие сосуды - артерио-венозные анастомозы, при необходимости обеспечивающие сброс крови из артериальной системы в венозную, минуя капилляры.

5.Ёмкостные сосуды - вены, обладающие большой растяжимостью и содержащие до 80% крови. Обеспечивают венозный возврат крови к сердцу.

Условия создания давления в сосудистой системе.

Рассмотрев функциональное значение различных отделов сосудистого русла, можно сделать вывод об условиях, необходимых для создания и поддержания давления крови и непрерывного кровотока в сосудистой системе. Несмотря на то, что кровь из сердца поступает только во время систолы, давление в системе сохраняется также во время диастолы, и кровь не прерывает своего движения. Этому служит: 1.нагнетательная работа сердца; 2.эластические свойства крупных сосудов - аорты и артерий, и 3.наличие периферического

36

сопротивления. Объяснения значения второго и третьего факторов смотри выше.

Артериальное давление является одним из важнейших показателей гемодинамики и наиболее часто исследуется в клинике. На практическом

занятии Вы

познакомитесь с аускультативным методом измерения

артериального

давления по Короткову. Максимальное давление, которое

возникает в результате систолы, называется систолическим артериальным давлением, а минимальное значение в диастолу - диастолическим давлением. У молодого человека нормальное систолическое давление составляет 110-120, а диастолическое 70-80 мм рт.ст. Разность между систолическим и диастолическим называется пульсовым давлением. Пульсовое давление, при

прочих

равных

условиях

пропорционально

количеству крови,

выбрасываемому сердцем при каждой систоле.

 

 

Кроме уже указанных параметров,

определяют ещё

среднее артериальное

(или

среднее

динамическое)

давление, которое

обеспечивает

гемодинамический эффект. Для центральных артерий его можно считать равным средней арифметической величине систолического и диастолического давлений, или сумме диастолического и половины пульсового давления (80+20=100 мм рт. ст.). В одной и той же артерии среднее давление в отличие от систолического и диастолического в покое и при физической нагрузке представляет собой сравнительно постоянную величину и не отклоняется более чем на 3-4 мм рт.ст.

Основные показатели гемодинамики

Гемодинамика изучает механизмы движения крови в сердечно-сосудистой системе. Она является частью гидродинамики, раздела физики, изучающего движение жидкостей.

Гемодинамика определяется двумя силами: давлением - P, которое оказывает влияние на жидкость и сопротивлением - R, которое она испытывает при трении о стенки сосудов и вихревых движениях. Непосредственной причиной движения крови по сосудам является разность давлений, создаваемая работой сердца на артериальном и венозном концах сосудистой системы. Эффективность работы сердечно-сосудистой системы оценивается

минутным объёмом кровотока (МОК), т.е. количеством крови,

протекающим через сосуды за минуту. Согласно законам гидродинамики, количество жидкости - Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале – P1 и конце трубы – P2 и обратно пропорционально сопротивлению току жидкости - R:

Q P1 - P2 R

Если применить это уравнение к большому кругу кровообращения, то следует иметь в виду, что давление в месте впадения полых вен в сердце близко к нулю. В этом случае уравнение можно записать как:

37

 

Q

P

 

 

R

 

 

Где Q - количество крови, изгнанное сердцем в минуту, P - величина

среднего давления в аорте,

R- величина сосудистого сопротивления. Из этого

уравнения следует, что

 

 

 

P = Q X R., т.е. давление

в системе прямо пропорционально объёму крови,

выбрасываемому сердцем

в аорту в минуту и величине периферического

сопротивления.

МОК всей артериальной или венозной системы численно равен минутному объёму сердца. В покое эта величина составляет 5 литров в минуту. В стационарном состоянии количество крови, оттекающее в минуту от сердца в аорту, или легочный ствол, равно количеству крови, возвращающемуся к сердцу через полые, или лёгочные вены. В любом месте артериальной или венозной системы, если иметь в виду общее сечение указанных сосудов в целом, минутный объём в каждый данный момент будет одинаков, т.е. те же 5 литров. Общий МОК складывается из суммы минутных объёмов всех органов, величина которых различна. Для увеличения кровотока активно функционирующего органа в пределах того же самого общего МОК надо уменьшить кровоток других органов, которые в данный момент находятся в состоянии покоя. Такое перераспределение кровотока в сосудистой системе осуществляется путём изменения сосудистого сопротивления. В активно функционирующем органе сосуды расширяются, а в остальных суживаются. В итоге функционирующий орган получает больше крови.

Протекая по трубке, жидкость преодолевает сопротивление, которое возникает вследствие внутреннего трения частиц жидкости между собой и о стенку трубки. Из формулы Пуазейля следует, что сопротивление будет тем больше, чем больше вязкость жидкости, чем длиннее трубка и чем уже её диаметр.

Формула Пуазейля

R8 l η

πr4

Где η - коэффициент вязкости, l - длина трубки и r - радиус.

Очень важно обратить внимание на то, что величина сопротивления в большей степени зависит от изменений диаметра сосудов, чем длины пройденного пути, и сопротивление обратно пропорционально четвёртой степени радиуса трубки. Из этого следует, что при увеличении диаметра сосуда в два раза, гидродинамическое сопротивление, уменьшится в 16 раз.

38

Во столько же раз увеличится объёмный кровоток. Учитывая эти взаимоотношения, ясно, что при местных или системных приспособительных реакциях сосудистого русла, как уже было сказано выше, главную роль в регуляции давления и объёмной скорости кровотока играют изменения радиуса сосудов. По мере удаления от основания аорты, сопротивление сосудов всё время увеличивается, т.к. диаметр каждого сосуда (артерия, артериола, капилляр) становится всё меньше. В каком же отделе сосудистой системы кровь встречает наибольшее сопротивление для движения?

Наибольшим сопротивлением из всех сосудов обладают артериолы. Они имеют просвет почти такой же узкий как капилляры, но значительно длиннее их, и скорость течения крови в них значительно выше. При прочих равных условиях сопротивление будет тем больше, чем больше скорость тока крови в сосудах, т.к. при этом возрастает внутреннее трение. Если на продвижение крови в крупных и средних артериях расходуется 10% энергии сердца, то 85% расходуется на продвижение крови в артериолах и капиллярах. Артериолы обладают толстой мышечной стенкой, с помощью которой меняется их просвет, и они являются главным регулятором уровня общего артериального давления. Сеченов И.М. называл артериолы кранами сердечно-сосудистой системы. Открытие этих кранов увеличивает приток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны. Итак, артериолы играют двоякую роль в кровообращении: 1) участвуют в поддержании необходимого уровня общего артериального давления, создавая основное сопротивление движению крови, 2) участвуют в регуляции величины местного кровотока через тот или иной орган, изменяя свой диаметр.

Динамика изменения давления и общего сопротивления в разных отделах сосудистого русла показана на рис. 19.

В артериальной части сопротивление медленно возрастает. На отрезке от мелких артерий до капилляров оно резко увеличивается за счет уменьшения диаметра артериол. В капиллярной части оно возрастает более медленно и совсем медленно в венах. Обратите внимание, что несмотря на то, что диаметр вен увеличивается по сравнению с капиллярами, рост сопротивления продолжается. И это происходит за счёт значительного увеличения длины пройденного пути. Кривая изменения среднего давления показывает, что оно имеет значительную величину в аорте - 100мм рт. ст., и круто снижается на участке, где больше всего возрастает сопротивление, т. е. в артериолах. И давление здесь снижается почти на 50%. Так, на входе в артериолы давление около 80, а на выходе около 35 мм рт.ст. В венах происходит дальнейшее снижение давления и в крупных венах, проходящих в грудной полости, оно может достигать -3 мм.рт.ст., что связано с отрицательным давлением в плевральной полости.

39

Рис.19 . Соотношение между давлением Р и общим сопротивлением R в

различных отделах сосудистой системы.

1 – аорта, 2 - артерии и артериолы, 3 –капилляры, 4 - полые вены.

Линейная скорость.

Зная объёмную скорость кровотока, можно рассчитать линейную скорость движения частиц крови, которая выражается в см в сек.

V

Q

 

π r2

 

Рис. 20

Средняя линейная скорость тока крови в разных частях сосудистой системы

40

В центре сосуда линейная скорость частиц максимальна, около стенки сосуда она минимальна в связи с трением частиц о стенку. Линейная скорость в различных сосудах неодинакова (рис. 20).

Скорость движения крови зависит от общей ширины данного отдела сосудистого русла. В кровеносной системе самым узким местом является аорта. При разветвлении артерий суммарный просвет всех ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: общий просвет всех капилляров в 500-600 раз больше просвета аорты. Соответственно, кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте. Так в аорте линейная скорость составляет 20-50 см в сек., а в капиллярах 0,5 мм в сек. В венах линейная скорость снова возрастает, т.к. суммарный просвет сосудистого русла снова суживается.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объёмная скорости непрерывно меняются, а в капиллярах и венах пульсации отсутствуют и кровоток постоянен. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы затрачивается на растяжение аорты и крупных артерий, которые образуют эластическую или компрессионную камеру. Поступающий сюда значительный объём крови растягивает её. При этом кинетическая энергия, развиваемая сердцем, переходит в энергию эластического напряжения растянутых артериальных стенок. Когда систола заканчивается, растянутые стенки артерий спадаются и проталкивают кровь в капилляры, поддерживая в них кровоток во время диастолы.

Скорость кругооборота крови.

Время полного кругооборота - это время, за которое кровь проходит большой и малый круг кровообращения. При частоте сердечных сокращений 70-80 в минуту кругооборот крови происходит за 20-23 секунд. На полный кругооборот тратится 27 систол сердца. 1/5 времени полного кругообо рота крови приходится на прохождение крови по малому кругу кровообращения, 4/5 - по большому кругу. При тяжёлых расстройствах сердечной деятельности скорость кругооборота крови замедляется, она может доходить до 63 секунд.

Роль гидростатического фактора

всистеме кровообращения.

Вразличных участках сосудистой системы кровь распределяется в соответствии с направлением силы тяжести, называемой в кровообращении

гидростатическим фактором. Так, при переходе человека из горизонтального положения в вертикальное, кровь в силу тяжести могла бы задерживаться в венах нижних конечностей и растягивать их, т.к. венозные сосуды имеют стенки со слабо развитыми мышцами. В норме после часового стояния объём нижних конечностей увеличивается почти на 4% по сравнению с объёмом в лежачем положении. Таким образом, гидростатический фактор создаёт затруднение для кровотока в нижней

41

половине туловища. У здорового человека имеются механизмы, противодействующие гидростатическим силам. Ниже перечисленные факторы способствуют возврату крови к сердцу.

1. Кинетическая энергия, сообщаемая крови сердцем во время систолы. 2.Присасывающее действие грудной клетки и сердца. Существующее в плевральной полости отрицательное давление присасывает кровь из периферических вен в грудные, что особенно заметно во время вдоха, когда внутриплевральное давление ещё больше снижается. Кровь из вен присасывается и сердцем во время диастолы вследствие падения давления в правом предсердии.

3.Тонус сосудистой мышечной стенки, проявляющийся в констрикции венозных сосудов, регулируемый нервными и гуморальными влияниями. 4.Сокращения скелетной мускулатуры (так называемый периферический мышечный насос), способствующие «выжиманию» крови из вен.

5. Венозные клапаны, препятствующие обратному току крови.

Уровень центрального венозного давления (ЦВД), т.е. давления в правом предсердии, оказывает существенное влияние на величину венозного возврата крови к сердцу. При понижении давления в правом предсердии от 0 до 4 мм рт. ст. приток венозной крови возрастает на 20-30%. При падении ниже 4 мм рт. ст. полые вены начинает спадаться. При повышении давления в правом предсердии на 1 мм рт.ст. венозный возврат снижается на 14%. ЦВД обычно измеряется в мм вод. ст. Средняя величина ЦВД у здоровых людей в условиях мышечного покоя составляет от 40 до 120 мм вод. ст. При вдохе ЦВД уменьшается за счёт падения плеврального давления и дополнительного растяжения правого предсердия. Это способствует более быстрому наполнению предсердий. При выдохе ЦВД растёт и венозный возврат к сердцу уменьшается. При операциях на сердце с использованием искусственного кровообращения, важно следить за величиной ЦВД, т.к. оно даёт представление о величине венозного возврата и является одним из критериев для контроля достаточности перфузии сердца.

2. 2 РЕГУЛЯЦИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Задача сердечно-сосудистой системы обеспечить наилучшее

кровоснабжение органов и

тканей

при различных функциональных

состояниях организма. Это

осуществляется благодаря поддержанию

необходимого уровня артериального давления и перераспределению кровотока между органами и тканями в соответствии с их потребностями в данный момент.

Необходимый уровень системного артериального давления достигается путём непрерывного поддержания точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудов, которое зависит от их тонуса. Давление крови тем выше, чем

42

больше минутный объём сердца (Q) и периферическое сопротивление сосудов

(R): P=Q R.

Сосудистый тонус это постоянно существующее возбуждение гладкомышечных клеток в стенках артерий и артериол, выражающееся в некотором их сокращении, что приводит к сужению этих сосудов и созданию сопротивления движению крови. Физиологическое значение сосудистого тонуса состоит в том, что он ограничивает ёмкость системы кровообращения, приспосабливая её к количеству циркулирующей крови, и от него зависит величина периферического сосудистого сопротивления. Чем выше тонус, тем

уже

артерии и артериолы и тем больше периферическое сопротивление,

меняя

величину которого можно изменять уровень

системного

артериального давления. В свою очередь, изменяя сопротивление сосудов в отдельных органах, можно осуществлять перераспределение кровотока в пользу наиболее активно функционирующего в данный момент, которому требуется усиленное кровоснабжение. Для этого тонус сосудов данного органа снижается, они расширяются, одновременно сосуды других областей сужаются, и возросший поток крови устремляется в артерии активно функционирующего органа. Регуляция сосудистого тонуса осуществляется с помощью сосудодвигательных нервов.

Сосудосуживающие и сосудорасширяющие нервы Впервые сосудосуживающее действие симпатических нервных волокон

было показано отечественным физиологом Вальтером А.П. (1842) на плавательной перепонке лягушки. Позже французский учёный К.Бернар (1851) подтвердил сосудосуживающее действие симпатических нервов. В опыте на кролике он раздражал электрическим током периферический конец перерезанного на шее симпатического нерва, волокна которого иннервировали сосуды уха. При этом кожа уха становилась бледной и холодной вследствие уменьшения просвета сосудов. Кроме того в данном опыте им было сделано важное открытие в отношении тонуса симпатических нервных волокон. Сразу после перерезки симпатического нерва на шее наблюдалось значительное расширение сосудов ушной раковины. Кожа уха при этом краснела и повышалась его температура. Такая реакция сосудов свидетельствовала о том, что симпатические нервы находятся в состоянии постоянного тонического возбуждения и импульсы, идущие по ним поддерживают тоническое сокращение гладкомышечных клеток стенок артерий и артериол. Возрастание частоты импульсов в этих нервах приводит к сужению сосудов, а уменьшение частоты импульсации к расширению. Для большинства сосудов организма симпатические нервные волокна являются вазоконстрикторными нервами. В их постганглионарных нервных окончаниях выделяется медиатор норадреналин, который суживает сосуды, действуя через альфа-адренорецепторы гладкомышечных клеток.

Расширение сосудов осуществляется нервными волокнами нескольких типов.

43

Среди них парасимпатические вазодилятаторные нервные волокна в составе барабанной струны, языкоглоточного, верхнегортанного нервов, выходящих из продолговатого мозга, расширяющие сосуды слюнных желёз и языка, и в составе тазового нерва из крестцового отдела позвоночника для органов малого таза. В своих окончаниях эти волокна выделяют ацетилхолин. Так как область иннервации парасимпатическими волокнами невелика, и они

Рис. 21 Аксон-рефлекс

не могут обеспечить расширение сосудов всех частей тела, в организме существуют и другие сосудорасширяющие нервные волокна, перечисленные ниже.

В скелетной мускулатуре некоторых животных расширение артерий и артериол происходит с участием симпатических холинэргических волокон, которые в своих окончаниях выделяют в качестве медиатора не норадреналин, а ацетилхолин.

В скелетной мускулатуре человека симпатические волокна оказывают сосудорасширяющее действие, которое достигается через взаимодействие норадреналина с бета-адренорецепторами гладкомышечных клеток сосудистой стенки.

Сосуды кожи расширяются с помощью чувствительных волокон задних корешков спинного мозга. При химическом или механическом раздражении кожи возникает местная сосудорасширяющая реакция, в основе которой

лежит так называемый аксон-рефлекс (рис 21).

Расширение сосудов в этом

случае связано с тем, что возбуждение

от кожных рецепторов

распространяется по чувствительным волокнам не только к спинному мозгу (ортодромно), но также по эфферентным коллатералям к артериолам данного кожного участка (антидромно). В нервном окончании, подходящем к кровеносному сосуду в качестве медиатора выделяется одно из сильных сосудорасширяющих веществ: либо гистамин, либо брадикинин.

И, наконец, расширение большинства артерий и артериол может осуществляться путём снижения частоты импульсов, посылаемых

вазоконстрикторным центром периферическим сосудам по

симпатическим сосудосуживающим волокнам.

44