Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методички по нормальной физиологии / Физиология кровообращения

.Pdf
Скачиваний:
702
Добавлен:
30.03.2015
Размер:
7.77 Mб
Скачать

Амплитуда зубцов в мВ: Р – 0-0,3; Q – 0-0,06; R – 0,6-1,6; S – 0,15-0,17; T

0,3. В норме амплитуда зубца P составляет 1/3 высоты R, а высота зубца T 1/2-1/3 высоты зубца R.

Таблица 5. Длительность основных элементов нормальной ЭКГ при частоте сокращений сердца 75 сокращений в минутах.

Зубец Р

0,06-0,10

Интервал PQ

0,12-0,20

Интервал QRS

0,06-0,10

Интервал QT

0,35-0,44

Как уже говорилось, при нормальном положении сердца электрическая ось находится в пределах от +10 до +70 гр. Величина зубца R во втором отведении равна алгебраической сумме этих зубцов в 1 и 111 отведении

(Рис.5).

У здоровых детей и подростков, а также у взрослых людей астенической конституции при низком стоянии диафрагмы наблюдается более вертикальное положение сердца, при котором анатомическая и электрическая

ось направлены более вертикально, т.е.

отклонены в правую сторону и угол

альфа увеличивается до + 90 гр. ЭКГ

у таких людей будет правого типа.

При этом зубец R в первом отведении будет минимальным, а в третьем максимальным.

20

Рис.7. Динамика моментного вектора сердца

и формирование ЭКГ.

Правограмма наблюдается в патологии у людей с гипертрофией правого желудочка. Иная ситуация складывается у людей гиперстенического телосложения, а также при ожирении, при беременности, когда отмечается высокое стояние диафрагмы, сердце занимает более горизонтальное положение. При этом электрическая ось отклоняется влево, угол альфа уменьшается до 0 или даже становится отрицательным. При левом типе в 1 отведении зубец R достигает максимальной величины, а в III он минимальный. В патологии левограмма наблюдается у людей при гипертрофии левого желудочка. Изменения ЭКГ, связанные с изменением положения сердца, происходят и при дыхании. На вдохе диафрагма опускается, соответственно опускается и верхушка сердца, и сердце занимает более вертикальное положение. На выдохе происходят противоположные изменения.

Возрастные особенности ЭКГ у детей

21

В связи с преобладанием массы правого желудочка над левым и влиянием на работу сердца главным образом симпатической нервной системы ЭКГ здоровых детей имеет свои особенности а каждого возрастном периоде.

I. Для новорожденных характерна так называемая "правограмма". Правый тип ЭКГ определяет соотношение зубцов S и R: высокий зубец R в третьем отведении и глубокий зубец S в первом отведении. Правограмма новорожденных обусловлена относительно большей величиной правого желудочка.

А) Особенности зубцов ЭКГ (таблица 6).

1.Зубец Р высокий, часто заострен. Отношение величины зубца Р к зубцу R во втором отведении составляет 1:3, у взрослых это отношение равно 1:8. Это связано с относительно большими размерами предсердий, особенно правого.

2.Высота зубца R определяется массой желудочков, поэтому у новорожденных она меньше.

3.Зубец Т постоянен, может быть низким, уплощенным и даже отрицательным, встречается двухфазная форма зубца.

Б) Особенности, интервалов и комплексов ЭКГ.

1.Интервал РQ укорочен, что свидетельствует о более высокой скорости проведения возбуждения по проводящей системе сердца.

2. По той же причине укорочен комплекс QRS

II. У детей дошкольного возраста тип ЭКГ меняется. В этот период в одинаковом числе случаев наблюдается нормальный и правый тип ЭКГ, иногда встречается и левограмма. Зубец Р становится меньше в связи с увеличением массы желудочков, отношение зубцов Р/R равно 1:6. Увеличивается масса и сила сокращений желудочков, что приводит к увеличению зубца R, скорость проведения возбуждения по проводящей системе сердца снижается, в связи c этим увеличивается интервал РQ и длительность комплекса QRS.

III. У школьников в большинстве случаев встречается нормальный тип ЭКГ. Чаще чем в предыдущем возрастном периоде, встречается левограмма, правограмма наблюдается редко. Зубцы приобретают форму и величину, свойственную взрослым.

 

 

 

Таблица 6.

Особенности ЭКГ у детей.

 

 

 

 

 

 

 

Возраст

отношение

длительность в секундах

 

 

зубца Р к R

интервала РQ комплекса QRSТ.

 

 

 

 

 

 

новорожденные

1/3

0,10

0, 04

 

 

 

 

 

 

дети дошкольного возраста

1/6

0,13

0, 05

 

 

 

 

 

 

дети школьного возраста

 

0,14

0, 06

 

 

 

 

 

 

взрослые

1/8

0.15

0, 08

 

 

 

 

 

 

Вопросы для самоконтроля

22

1.Что такое электрическая ось сердца?

2.В чём заключается векторная теория ЭКГ

3.Чем объяснить появление разнонаправленных зубцов Q, R и S при возбуждении желудочков?

4.Почему зубец R имеет разную величину и направление в трёх стандартных отведениях?

5.Что характеризуют интервалы PP, PQ, QS, QT, и TP?

Особенности сократимости сердечной мышцы Зависимость “сила стимула-сила сокращения”

В отличие от скелетной мышцы сила сокращения сердечной мышцы не зависит от силы раздражителя закон “всё или ничего”. На допороговое раздражение миокард желудочков вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает его максимальное сокращение (рис.8).

Дальнейшее увеличение силы раздражающего тока не изменяет величины сокращения. Подчинение сердечной мышцы закону “всё или ничего” объясняется особенностями строения миокарда, клетки которого образуют функциональный синцитий (все мышечные клетки соединены друг с другом вставочными дисками с очень низким электрическим сопротивлением). Поэтому пороговый раздражитель приводит к возбуждению всех кардиомиоцитов и развитию максимального сокращения.

Рис. 8. Независимость силы сокращений миокарда (а) от силы раздражителя (б) – закон «все или ничего». Пороговый стимул отмечен звездочкой.

Зависимость “частота-сила”.

Закон “всё или ничего” не абсолютен. Если в эксперименте раздражать мышцу желудочков импульсами возрастающей частоты, не меняя их силы, то величина сокращения миокарда будет возрастать на каждый следующий стимул (лестница Боудича или хроноинотропный эффект).

23

Рис.9. Зависимость силы сокращений миокарда (а) от частоты

стимуляции (б) – «лестница Боудича», полученная на сердце лягушки, предварительно остановленном с помощью первой лигатуры Станниуса.

Объясняется такой эффект тем, что при высокой частоте стимуляции промежутки времени между сокращениями укорачиваются, вследствие чего не происходит полного удаления ионов кальция, поступивших в клетку при очередном сокращении. В результате с каждым последующим сокращением концентрация внутриклеточного кальция возрастает и соответственно возрастает и сила сокращения (рис 9).

Возбудимость сердечной мышцы

Для изучения возбудимости надо наносить раздражение электрическим током пороговой или сверхпороговой силы на сердце лягушки в разные фазы его цикла. При этом увидим, что сердце не ответит на это раздражение, если оно будет нанесено в период систолы, когда миокард находится в состоянии абсолютной невозбудимости, т.е. рефрактерности. Обратите внимание, что рефрактерный период занимает всю систолу и начало диастолы (рис.10). С началом расслабления возбудимость миокарда начинает восстанавливаться, и наступает фаза относительной рефрактерности.

24

Рис. 10. Графики сокращения, потенциала действия и возбудимости

миокарда желудочков.

Нанесение сверхпорогового раздражения в фазу относительной рефрактерности способно вызвать внеочередное сокращение желудочков экстрасистолу. При этом пауза, следующая за желудочковой экстрасистолой, длится дольше, чем обычная, так называемая компенсаторная пауза. Большая длительность этой паузы объясняется тем, что очередной импульс из синусного узла застаёт желудочки в период рефрактерности уже полученной экстрасистолы, и нормальное их сокращение возможно только с приходом очередного импульса (рис.11).

У человека дополнительные, внеочередные импульсы могут возникать в норме в элементах проводящей системы или в самом миокарде желудочков при активации симпатического отдела вегетативной нервной системы (например при эмоциональном возбуждении), а также при патологических процессах в миокарде. Итак, абсолютная невозбудимость миокарда,

продолжающаяся всю систолу и начало диастолы, делает сердце нечувствительным в этот период к дополнительным раздражениям, исключает возможность длительного непрерывного (тетанического) сокращения, и тем самым помогает сердцу работать в режиме одиночного сокращения. Длительная рефрактерность гарантирует наступление диастолы даже при действии внеочередных раздражений, и создаёт условия для наполнения желудочков кровью.

Рефрактерность миокардиоцитов обеспечивает также нормальную последовательность распространения возбуждения в сердце, препятствует возникновению кругового движения возбуждения по миокарду.

25

отсутствие возбудимости рис.11. График желудочковой экстрасистолы(1)

и график возбудимости миокарда во время сокращения (II).

Стрелками отмечен момент нанесения внеочередного раздражения, треугольничками момент поступления очередного импульса из синоатриального узла.

Синусовая экстрасистола. При эмоциональном возбуждении или под влиянием воспалительных изменений внеочередной импульс возбуждения может возникнуть в самом синоатриальном узле, следствием которого будет полный внеочередной цикл сердца, за которым в отличие от желудо чковой экстрасистолы не следует компенсаторная пауза. Понятно, что пауза перед внеочередным сокращением будет укорочена (рис. 12).

Рис.12. Синусовая экстрасистола (обозначена звездочкой).

Ионы и сердце

Для нормальной работы кардиоцитов очень важно сохранение постоянства концентраций ионов во внутри- и внеклеточной жидкости, т.к. сердце очень чутко реагирует на изменения электролитного баланса крови и тканевой жидкости в самом миокарде.

Значительный избыток ионов калия во внеклеточной жидкости приводит к падению возбудимости, проводимости, угнетению активности синоатриального узла, развитию синусовой брадикардии, а затем к полному прекращению электрической и сократительной активности миокарда, к остановке сердца в диастоле.

26

В естественных условиях значительное повышение концентрации ионов калия в плазме крови практически невозможно, однако оно может наблюдаться, например, при передозировке вводимых внутривенно препаратов калия. В кардиохирургии гиперкалиевые растворы (так называемые кардиоплегические) используются специально для временной остановки сердца.

Гипокалиемия приводит к синусовой тахикардии и другим нарушениям сердечного ритма, вплоть до фибрилляции желудочков. Это должен учитывать врач при назначении мочегонных средств, вызывающих усиленное выведение калия из организма. Компенсировать потерю калия можно соблюдением диеты с повышенным содержание калия в рационе или назначением калийсодержащих препаратов.

Нарушение соотношения внутри- и внеклеточной концентрации калия может наблюдаться при гипоксии миокарда. При этом мембранный потенциал может приближаться к пороговому значению, что приводит к повышению возбудимости кардиомиоцитов и может вызвать экстрасистолию.

Увеличение внеклеточной концентрации ионов кальция влияет,

прежде всего, на сократительную функцию рабочих кардиоцитов. Увеличение входа кальция в цитоплазму вызывает усиление сократимости миокарда. Подобные эффекты вызывают адреналин и норадреналин, под влиянием которых открываются дополнительные кальциевые каналы и увеличивается кальциевый ток в клетку. В клетках синоатриального узла ускоряется деполяризация и возрастает частота возбуждения.

Удаление кальция из внеклеточной среды приводит к снижению его внутриклеточной концентрации, к ослаблению сократительной активности. Ряд веществ, блокирующих вход кальция в клетку, оказывают такой же эффект, как и удаление кальция из внеклеточной жидкости, например, ионы марганца и антагонисты кальция фармакологические препараты верапамил и нифедипин, используемые при ишемии и гипоксии сердечной мышцы. Они защищают клетки миокарда, уменьшая его сократительную активность и метаболические затраты.

Вопросы для самоконтроля

1.В чём заключается закон сокращения "всё или ничего", и какое он имеет значение для работы сердца?

2.Почему возбудимость миокарда ниже возбудимости скелетной мышцы?

3.Чем объяснить причину длительной рефрактерности сердечной

мышцы? Какое значение для работы сердца имеет длительная невозбудимость?

4.При каких условиях может возникнуть желудочковая экстрасистола? Почему после неё следует длительная компенсаторная пауза?

5.Чем отличается синусовая экстрасистола от желудочковой?

1.3.Регуляция минутного объема сердца

27

Задача сердца обеспечить оптимальное кровоснабжение органов и тканей при различных функциональных состояниях организма. Для этого необходимы достаточные величина сердечного выброса и уровень среднего системного артериального давления.

Сердечным выбросом или минутным объемом сердца (МОС) называют количество крови, выбрасываемое желудочком в минуту. В покое эта величина составляет в среднем 5 л/мин. и при необходимости может изменяться в широких пределах. Так, при физической нагрузке МОС возрастает до 30 и более литров. Обязательным условием нормальной работы сердца при этом является равенство количества притекающей крови к сердцу по венам и количества, выбрасываемого сердцем в артериальную систему. Под влиянием внешних и внутренних раздражителей это равновесие нарушается, что выражается либо в изменении венозного притока к сердцу, либо в изменении системного артериального сопротивления. И сердце должно постоянно восстанавливать нарушенное равновесие и обеспечивать оптимальное кровоснабжение органов и тканей. Адекватное приспособление сердца к изменяющимся гемодинамическим условиям осуществляется благодаря существованию двух типов регуляторных механизмов: внутрисердечной и внесердечной регуляции.

Внутрисердечная миогенная регуляция, представленная гетеро - и гомеометрической саморегуляцией, позволяет приспосабливать работу сердца к изменениям венозного притока и артериального сопротивления благодаря особым свойствам миокардиоцитов и проявляет себя даже в условиях изолированного миокарда.

Гетерометрическая саморегуляция. В исследовании, выполненном на сердечно-лёгочном препарате теплокровного животного с регулируемой величиной венозного притока к сердцу, Е. Старлинг установил, что сила каждого сердечного сокращения тем больше, чем больше конечный диастолический объём камер сердца.

Проще говоря, чем больше крови поступает в желудочки во время диастолы и чем сильнее они растягиваются при этом, тем с большей силой они сокращаются во время систолы закон сердца или закон длины-

силы Франка-Старлинга. В специальной литературе увеличение венозного притока к сердцу называют «преднагрузкой». Увеличение преднагрузки по механизму Франка-Старлинга вызывает усиление сердечных сокращений. Возрастание силы сокращения при этом объясняется более эффективным взаимодействием актиновых и миозиновых нитей в саркомере предварительно растянутой клетки. Гетерометрическая миогенная саморегуляция обеспечивает изменение работы миокарда в соответствии с количеством притекающей к сердцу венозной крови. При увеличении венозного притока возрастает выброс крови в артериальную систему, что способствует улучшению кровоснабжения органов. Гетерометрическая саморегуляция проявляется при различных физиологических состояниях: например, при переходе тела из вертикального положения в горизонтальное, или при

28

физической нагрузке. В обоих случаях увеличивается венозный приток к сердцу, и указанный инотропный механизм позволяет сердцу приспособиться к изменившейся гемодинамической ситуации.

Гомеометричекая саморегуляция. Сердце способно увеличивать силу

сокращения

и при неизменной исходной длине

волокон миокарда.

Подобный

механизм регуляции проявляется при увеличении давления в

аорте (эффект Анрепа). Выбрасывая кровь в аорту или лёгочную артерию, сердце преодолевает давление крови или сопротивление. Это явление получило название «постнагрузки». Увеличенная сила сокращения в этом случае направлена на преодоление возросшего сосудистого сопротивления и на сохранение постоянного минутного объема сердца, т.е. на поддержание стабильного кровоснабжения органов. Увеличение силы сокращения в этих условиях объясняется поступлением большего количества ионов кальция в кардиомиоциты во время потенциала действия с последующим участием этих ионов в молекулярном механизме сокращения.

Внутрисердечная нервная регуляция

Основой для данного вида регуляции работы сердца является внутрисердечная автономная нервная система (рис.13). Если произвести полную денервацию или пересадку сердца теплокровного животного, то реакция такого сердца на различные нагрузки почти ничем не отличается от

реакций

у

интактного животного.

Денервированное

сердце целиком

обеспечивает

потребности

организма.

Это доказывает

существование в

сердце

собственной

автономной

регуляции,

осуществляемой

метасимпатической нервной системой, нейроны которой располагаются во внутрисердечных нервных ганглиях.

Вместе с тем, метасимпатическая нервная система сердца это не просто внутрисердечныое парасимпатическое сплетение, где происходит переключение преганглионарных волокон на ганглионарные нейроны. Это относительно независимая самостоятельная интегративная нервная система.

Она имеет собственные сенсорные, вставочные и двигательные нейроны, а также свои медиаторы. Аксоны чувствительных клеток метасимпатической нервной системы проходят в составе афферентной порции

вагуса и несут чувствительную импульсацию в высшие отделы

центральной

нервной системы.

В свою очередь со

вставочными

и

моторными

метасимпатическими

нейронами

контактируют

 

эфферентные

преганглионарные волокна блуждающего нерва и сердечных симпатических ветвей, т.е. метасимпатические сердечные нейроны являются общим конечным путём и для внутрисердечных и для центральных импульсов.

Местные сердечные рефлексы, осуществляемые метасимпатической нервной системой, регулируют силу, ритм сердечных сокращений,

скорость предсердно-желудочкового проведения возбуждения, а также скорость диастолического расслабления миокарда в зависимости от наполнения камер сердца, давления крови в аорте и коронарных сосудах.

29