
- •Электроника
- •Содержание
- •Раздел 1. Элементы электронной техники
- •Раздел 2.Истчники электропитания
- •Раздел3. Аналоговые интегральные микросхемы
- •Раздел 4. Цифровые интегральные микросхемы
- •Раздел 5. Фотоэлектрические приборы
- •Раздел 6. Аналого-цифровые функциональные устройства
- •Раздел 7. Микроконтроллеры
- •Раздел 1
- •Пассивные элементы электрических цепей
- •1.1 Резисторы
- •1.2 Конденсаторы
- •1.3 Индуктивности
- •1.4 Трансформаторы
- •2. Диоды
- •2.1 Принцип работы диода
- •Вольт-амперная характеристика диода
- •2.2 Выпрямительные диоды
- •2.3 Высокочастотные диоды
- •2.4 Импульсные диоды
- •2.5 Стабилитроны и стабисторы
- •3. Биполярные транзисторы
- •3.1Общие принципы
- •3.2 Основные параметры транзисторов
- •3.3 Схемы включения транзисторов
- •3.4 Ключевой режим работы транзистора
- •3.5 Усилительный режим работы транзистора
- •3.5 Способы задания рабочей точки по постоянному току в усилительном режиме
- •3.6 Схема включения транзистора с общим коллектором
- •4. Полевые (униполярные) транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •Входные и выходные характеристики полевого транзистора с p-n переходом и каналом n-типа
- •4.2 Полевые транзисторы с встроенным каналом
- •Входные и выходные характеристики моп - транзистора с встроенным каналом n -типа (кп 305)
- •4.3 Полевые транзисторы с индуцированным каналом
- •Крутизна
- •Особенности полевых моп транзисторов
- •Режимы работы каналов и полярности электродных напряжений полевых транзисторов
- •5. Генераторы электрических сигналов
- •5.1 Принципы построения генераторов.
- •5.3 Генераторы импульсов на логических элементах ттл и таймере 555 (кр1006ви).
- •6. Силовые полупроводниковые приборы
- •6.2 Тиристор.
- •6.3 Симисторы
- •6.4 Igbt транзистор
- •Раздел 2
- •7.1 Однофазный мостовой выпрямитель
- •7.2Стабилизаторы напряжения
- •7.2.1 Параметрические стабилизаторы напряжения
- •Раздел 4
- •8. Аналоговые микросхемы.
- •8.1 Свойства оу
- •Практическая трактовка свойств оу
- •8.2 Основы схемотехники оу
- •Входной дифференциальный каскад
- •Современный входной дифференциальный каскад
- •8.3 Параметры операционных усилителей
- •8.4 Принцип отрицательной обратной связи
- •8.5 Основные схемы включения оу. Инвертирующее включение
- •Применение инвертирующего усилителя в качестве интегратора
- •Неинвертирующее включение
- •Ограничитель сигнала
- •8.6 Компараторы
- •8.7 Триггер Шмитта
- •8.8 Схема мультивибратора
- •8.9 Активные фильтры
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.3 Структура ттл логических микросхем
- •Основные параметры логических ттл элементов
- •9.4 Микросхемы последовательного тип
- •9.4.1 Интегральные триггеры
- •9.4.2 Rs асинхронный триггер
- •9.4.3 Асинхронный d - триггер
- •9.4.4 Синхронный d - триггер со статическим управлением
- •9.4.5 Синхронный d -триггер с динамическим управлением
- •9.4.6 Синхронный jk - триггер
- •9.4. 8. Вспомогательные схемы для триггеров
- •9.4.9 Формирователь импульса
- •Мультиплексоры и демультиплексоры
- •Шифраторы, дешифраторы и преобразователи кодов
- •Счётчики импульсов
- •Раздел 5 Фотоэлектронные приборы
- •Отоэлектрические приборы.
- •10.1 Понятия о оптоэлектронных приборах
- •10.2 Элементы оптоэлектроники.
- •Раздел 6
- •11. Аналого-цифровые преобразователи
- •Основные характеристики интегрирующих ацп
- •12. Цифро-аналоговые преобразователи
- •Характеристики интегральных микросхем цап
- •Раздел 7
- •13. Микропроцессоры
- •13.1 Cisc--процессоры
- •13.2 Risc—процессоры
- •14. Компьютерное моделирование электронных устройств
- •15. Используемая литература
Характеристики интегральных микросхем цап
Тип |
Число разрядов |
Время установления, МКС |
Интегральная нелинейность, % |
Особенность исполнения |
КР572ПА1 |
10 |
5 |
0.10 |
Перемножающий с матрицей R—2R на КМОП ключах |
КР572ПА2 |
12 |
15 |
0,02 |
Перемножающий с матрицей R—2R и выходным регистром |
К594ПА1 |
12 |
3.5 |
0,02 |
С суммированием токов на комбинированной резис^-ивной матрице и биполярных транзисторах |
К1108ПА1 |
10 |
0.4 |
0,02 |
С суммированием токов на комбинированной матрице и биполярных транзисторных ключах |
К1118ПА1 |
8 |
20-10-' |
0,19 |
С суммированием токов на взвешенных резисторах и ЭСЛ структурах |
К118ПА4 |
10 |
30-10' |
0,10 |
Быстродействующий на ЭСЛ структурах |
Раздел 7
Микроконтроллеры
13. Микропроцессоры
Микропроцессор – это устройство цифровой обработки информации, осуществляемой по программе. По назначению он близок к процессору ЭВМ, однако обладает меньшими функциональными возможностями. Микропроцессор реализуется в виде одной или нескольких микросхем высокой степени интеграции и применяется совместно с электронным запоминающим устройством программы (3УП) и запоминающим устройством данных (ЗУД), а также с устройством ввода-вывода (УВВ) [2]. По аналогии с ЭВМ система, состоящая из микропроцессора и указанных устройств, получила название микро-ЭВМ или микропроцессорной системы (рисунок 3.22).
Рис121.– Функциональная схема микро-ЭВМ
Устройство ЗУ программ предназначено для хранения команд, составляющих программу работы микропроцессора, и выполняется таким образом, что информация, записанная в нем, не теряется при перерывах в напряжении питания. Устройство ЗУ данных используется для хранения данных, предназначенных для обработки микропроцессором. Устройство УВВ обеспечивает ввод данных в ЗУД и их вывод к внешним приборам и устройствам. Микропроцессор состоит:
а)из схем, обеспечивающих выборку команд из ЗУП, их дешифрирование и выполнение;
б)арифметическо-логического устройства (АЛУ),представляющего собой совокупность схем, реализующих арифметические и логические операции над данными;
в)устройства управления, предназначенного для управления операциями и имеющего связи с ЗУП, ЗУД, и УВВ;
д)различных регистров, служащих местом временного хранения и преобразования данных и команд.
Блоки микропроцессорной системы связаны трактом передачи адресов для выборки микропроцессором команд из ЗУП и данных из ЗУД или УВВ, а также трактом передачи команд из ЗУП в микропроцессор и данных из ЗУД или УВВ в микропроцессор и от него. Оба тракта передачи информации состоят из некоторого количества проводников, каждый из которых может подключаться к соответствующим приемникам и источникам микропроцессорной системы, осуществляя многократное использование каждого проводника для создания связи между узлами блоков микропроцессорной системы. Это достигается устройством управления микропроцессора, осуществляющим разделение во времени соответствующих связей (мультиплексирование).
Система с микропроцессором оперирует информацией в двоичной системе счисления. Каждый разряд двоичного числа называется битом. Крайний слева бит имеет наибольший вес, в связи с чем он называется старшим битом (разрядом). Крайний справа бит имеет наименьший вес, поэтому его называют младшим битом (разрядом). Обозначение битов 16-разрядного двоичного числа показано на рисунке 3.23.
Информация, которую обрабатывает микропроцессор, представляется группой битов, составляющих слово.
Рис.122 – Структура двоичного кода микропроцессорной системы
Количество битов в слове, несущем информацию о данных, зависит от типа микропроцессора. Наиболее распространены слова для передачи данных длиной в 4, 8, 12, 16 и 32 бит. Количеством битов в слове для передачи данных определяется, в частности, число разрядов приемных регистров, входящих в сверхоперативную память микропроцессора. Длина слова, предназначенного для передачи адресов (адресации) к ЗУП и ЗУД, может превышать длину слова для передачи данных (соответственно может быть больше и число проводников в тракте передачи адресов). Это позволяет существенно увеличить объем памяти ЗУП и ЗУД. Так, при 16-битовом адресном слове (16 проводников в тракте передачи адресов) может быть опрошено 2n= 65536 ячеек ЗУ.
Биты, образующие слово, подразделяют на группы. Группа, состоящая из 8 бит, называется байтом (рисунок 3.23). Деление слова на байты позволяет упростить представление двоичного слова, применив шестнадцатеричную форму записи (шестнадцатеричный код). Так, двоичное число, представленное на рисунке 3.23, будет иметь в шестнадцатеричном коде запись в виде E57D16.
Функционирование всех узлов и блоков микропроцессорной системы (см. рисунок 3.22) инициируется генератором тактовых импульсов. Для выполнения микропроцессором одной команды, хранящейся в ЗУП, требуется несколько периодов тактовых импульсов. Время выполнения команды называется командным циклом. Командный цикл может составлять один или несколько машинных циклов. В машинный цикл входят цикл выборки и исполнительный цикл (рисунок 3.24). Во время цикла выборки микропроцессор определяет адрес команды, находящейся в ЗУП, и считывает эту команду в микропроцессор. За время исполнительного цикла микропроцессор осуществляет выполнение считанной команды.
Рис.123 – Цикл работы микропроцессора