
- •В чем заключается отличие интеллектуальной системы от классической неинтеллектуальной сау (состоящей из п, и-регуляторов и пр.)? [вверх]
- •Являются ли инфузория-туфелька интеллектуальной системой? Поясните свое решение. [вверх]
- •Назовите несколько императивных и декларативных языков программирования. [вверх]
- •Дайте определение понятию «Знание» в контексте сии. [вверх]
- •Назовите 4 составных элемента логической модели представления знаний. [вверх]
- •Охарактеризуйте суть сетевой модели представления знаний. [вверх]
- •Как выглядит предложение-продукция в продукционной модели знаний? [вверх]
- •Дайте определение понятию «фрейм» в рамках фреймовой мпз. [вверх]
- •Представьте графически с помощью сетевой мпз область знаний «Подразделения сф ОмГту». [вверх]
- •Дайте определение понятию «предикат». [вверх]
- •Дайте определение понятию «факт» с точки зрения логики. [вверх]
- •Какие правила и методы используются в логической мпз для получения истинного высказывания. [вверх]
- •Дайте определение понятию «силлогизм». [вверх]
- •В чем заключается правило резолюций. [вверх]
- •Какие методы ии можно отнести к направлению биологического моделирования. [вверх]
- •Назовите и дайте определение двум основным подобластям направления в ии, связанного с накоплением и использованием знаний. [вверх]
- •В чем состоит задача классификации? [вверх]
- •Назовите и раскройте суть двух основных этапов формулирования задачи для решения её методами ии. [вверх]
- •Назовите причины возникновения и развития теории нечетких множеств и нечеткой логики. [вверх]
- •Укажите отличия нечеткого подмножества от четкого. [вверх]
- •Раскройте понятие функции принадлежности (характеристической функции). [вверх]
- •Дайте определению нейрону с математической точки зрение и опишите его в виде уравнения (укажите смысл используемых переменных). [вверх]
- •Для чего используется дополнительный вход нейрона обозначаемый как w0x0 (или t). [вверх]
- •Перечислите модификации линейной передаточной функции и охарактеризуйте их. [вверх]
- •Охарактеризуйте пороговую передаточную функцию и изобразите её график. [вверх]
- •Назовите 2 преимущества сигмоидальной передаточной функции и функции гиперболического тангенса над линейной и пороговой передаточными функциями. [вверх]
- •Изобразите нейрон реализующий операцию дизъюнкции. [вверх]
- •Перечислите 4-ре категории инс характеризующие способ взаимосвязи нейронов. [вверх]
- •На какие два основных класса разделяют инс. Опишите эти классы. [вверх]
- •В каком случае многослойная нс эквивалентна однослойной. [вверх]
- •В чем заключается цель обучения инс? [вверх]
- •Перечислите 3 парадигмы обучения инс и кратко их охарактеризуйте. [вверх]
- •Перечислите типы элементов составляющих перцептрон и опишите порядок их взаимодействия. [вверх]
- •Дайте общее определение алгоритма обучения инс (системы подкрепления). [вверх]
- •Запишите правило Хебба об обучении инс. [вверх]
- •О чем говорит теорема сходимости перцептрона, описанная и доказанная ф. Розенблаттом? [вверх]
- •Какие задачи решают с помощью самоорганизующихся карт Кохонена. [вверх]
- •Запишите базовое рекуррентное уравнение, вычисляющее текущие веса синапсов n-го слоя инс. [вверх]
- •На чём основывается способность нейронной сети к прогнозированию и сжатию данных. [вверх]
- •Какими характеристиками обладает инс в отличие от вм фон Неймана. [вверх]
- •Какая теорема лежит в основе генетических алгоритмов, и что она доказывает? [вверх]
- •Дайте определение понятию «эволюционные алгоритмы». [вверх]
- •Дайте определение понятию «генетические алгоритмы». [вверх]
- •Опишите шаги работы генетического алгоритма. [вверх]
- •Что определение «функции приспособленности» и укажите какую роль она играет в га. [вверх]
- •Назовите и опишите генетические операции, с помощью которых происходит получение новых решений в га. [вверх]
- •Перечислите критерии остановки генетического алгоритма. [вверх]
- •Назовите несколько областей применения генетических алгоритмов. [вверх]
- •Дайте определение понятию «экспертные системы». [вверх]
- •Изобразите структуру типичной экспертной системы. [вверх]
- •Что является ядром и самым важным компонентом экспертной системы? [вверх]
- •Зачем нужен инженер по знаниям при создании экспертной системы? [вверх]
- •В каких режимах может работать экспертная система, кратко охарактеризуйте их. [вверх]
- •Перечислите этапы разработки экспертная система и кратко охарактеризуйте их. [вверх]
Назовите причины возникновения и развития теории нечетких множеств и нечеткой логики. [вверх]
Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г.
Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов.
На пути развития нечетких систем принято выделять три периода:
Первый период (конец 60-х–начало 70 гг.) характеризуется развитием теоретического аппарата нечетких множеств (Л. Заде, Э. Мамдани, Беллман).
Во втором периоде (70–80-е годы) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). Одновременно стало уделяться внимание вопросам построения экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений находят широкое применение в медицине и экономике.
Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других.
Триумфальное шествие нечеткой логики по миру началось после доказательства в конце 80-х Бартоломеем Коско знаменитой теоремы FAT (Fuzzy ApproxiMFtion Theorem). В бизнесе и финансах нечеткая логика получила признание после того как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах.
Укажите отличия нечеткого подмножества от четкого. [вверх]
Нечеткое подмножество отличается от обычного тем, что для элементов х из S нет однозначного ответа "да-нет" относительно свойства P. В связи с этим, нечеткое подмножество множества S определяется как множество упорядоченных пар C ={MF(х)/х}, где MF(х) - характеристическая функция (или просто функция принадлежности), принимающая значения из некоторого упорядоченного множества M=[0,1]. Функция принадлежности указывает степень (уровень) принадлежности элемента x подмножеству C. Множество M называют множеством принадлежностей. Если M={0,1}, то нечеткое подмножество A может рассматриваться как обычное или четкое множество.
Раскройте понятие функции принадлежности (характеристической функции). [вверх]
Функция принадлежности - это базовая характеристика нечеткого множества. Обозначим её через MFc(x) – степень принадлежности к нечеткому множеству C, представляющей собой обобщение понятия характеристической функции обычного множества. Тогда нечетким множеством С называется множество упорядоченных пар вида C={MFc(x)/x}, MFc(x) [0,1]. Значение MFc(x)=0 означает отсутствие принадлежности к множеству, 1 – полную принадлежность.
Сколько значений может принимать функция принадлежности четкого множества. [вверх]
Пусть S - некоторое множество, x - элемент S, а P - некоторое свойство. Обычное (четкое) подмножество A множества S, элементы которого удовлетворяют свойству P определяется как множество упорядоченных пар C ={MF(х)/х}, где MF(х) - характеристическая функция, принимающая значение 1, если х удовлетворяет свойству P, и 0 - в противном случае.
Назовите три основные операции над множествами и их логические аналоги. [вверх]
Для нечетких множеств, как и для обычных, определены основные логические операции. Самыми основными, необходимыми для расчетов, являются пересечение, объединение и отрицание.
Пересечение двух нечетких множеств (нечеткое "И"):
Объединение двух нечетких множеств (нечеткое "ИЛИ"):
Отрицание нечеткого множества (нечеткое «НЕ"):
Запишите математическое выражение объединение двух нечетких множеств. [вверх]
Объединение двух нечетких множеств (нечеткое "ИЛИ"):
A v B: MFAB(x)=max(MFA(x), MFB(x)).
Перечислите атрибуты нечеткой переменной. [вверх]
Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.
Что такое базовое терм-множество? Приведите примеры множества термов. [вверх]
Базовое терм-множество Т – это множество значений лингвистической переменной. Элементы базового терм-множества представляют собой названия нечетких переменных. Например, есть лингвистическая переменная "Цена акции". Ее базовое терм-множество будет состоять из трех нечетких переменных: "Низкая", "Умеренная", "Высокая", а область рассуждений задана в виде X=[100;200] (единиц).
Перечислите три основные функций принадлежности нечётких множеств и нарисуйте их графики. [вверх]
Треугольная, трапецеидальная и гауссова функции принадлежности.
Какими параметрами описывается функция принадлежности гауссова типа. [вверх]
Функция принадлежности гауссова типа описывается формулой:
и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр σ отвечает за крутизну функции.
Изобразите совокупность графиков функций принадлежности всех термов лингвистической переменной "Величина зарплаты" (число термов выбирается произвольно). [вверх]
"Величина зарплаты" (число термов выбирается произвольно).
Какие условия должны соблюдаться полноты базы нечетких правил. [вверх]
1.Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.
2.Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).
Перечислите 4 этапа нечеткого логического вывода. [вверх]
В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация.
Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.
Изобразите модель искусственного нейрона и укажите на рисунке его составные части. [вверх]
Нейрон (нервная клетка) состоит из тела (cell body), или сомы (soma), и отростков нервных волокон двух типов - дендритов (dendrites), по которым принимаются импульсы, и единственного аксона (axon), по которому нейрон может передавать импульс.
Нейрон получает сигналы (импульсы) от аксонов других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль своего аксона (передатчика), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся специальные образования - синапсы (synapses), которые влияют на величину импульсов.
Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются химические вещества, щель, возбуждая или затормаживая, в зависимости от типа синазываемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую напса, способность нейрона-приемника генерировать электрические импульсы.
Результативность передачи импульса синапсом может настраиваться проходящими через него сигналами так, что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека.
1.Нейроны, выходные сигналы которые поступают на вход данному нейрону;
2.Сумматор входных сигналов;
3.Вычислитель передаточной функции;
4.Нейроны, на входы которых подаётся выходной сигнал данного;
В этой модели нейрона можно выделить три основных элемента:
синапсы, каждый из которых характеризуется своим весом или силой. Осуществляют связь между нейронами, умножают входной сигнал на весовой коэффициент синапса, характеризующий силу синаптической связи;
сумматор, аналог тела клетки нейрона. Выполняет сложение внешних входных сигналов или сигналов, поступающих по синаптическим связям от других нейронов. Определяет уровень возбуждения нейрона;
функция активации, определяет окончательный выходной уровень нейрона, с которым сигнал возбуждения (торможения) поступает на синапсы следующих нейронов.