Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экспрессия генов Патрушев

.pdf
Скачиваний:
1036
Добавлен:
30.03.2015
Размер:
7.15 Mб
Скачать

681

метилфосфонатных (-P-CH3) аналогов олигонуклеотидов, гибриды которых с РНК не расщепляются РНКазой H, показало, что их действие может быть следствием изменения пространственной структуры мРНК, а также нарушения ее связывания рибосомами. При этом олигонуклеотиды, в которых чередуются фосфодиэфирные и метилфосфонатные связи, сохраняли способность индуцировать расщепление мРНК РНКазой H в гибридах и в то же время характеризовались повышенной устойчивостью к действию внутриклеточных нуклеаз.

Использование аналогов олигодезоксирибонуклеотидов повышает результативность действия системы ингибирования трансляции. Еще более эффективными являются системы, в которых определенный уровень антисмысловых РНК непрерывно поддерживается за счет их эндогенного синтеза, а с мРНК взаимодействуют более протяженные комплементарные последовательности нуклеотидов.

Механизмы ингибирующего действия антисмысловых РНК. В первых опытах с антисмысловыми РНК, которые с помощью микроинъекции вводили в

ооциты X. laevis, было установлено, что они подавляют трансляцию соответствующих мРНК. В том случае, если антисмысловые РНК, комплементарные мРНК креатинкиназы В человека, синтезировались в ядрах клеток лимфомы человека, сплайсинг, 3’-концевой процессинг и экспорт соответствующих мРНК в цитоплазму не были нарушены, хотя антисмысловые РНК синтезировалась в эквимолярных количествах по отношению к мРНКмишени, а сама антисмысловая РНК была комплементарна последовательностям нуклеотидов части последнего кодирующего экзона, соседнего интрона и 3’-фланкирующей последовательности. Экспорт антисмысловой РНК из ядра в цитоплазму был несколько снижен по сравнению с соответствующей мРНК, хотя при этом происходило уменьшение внутриклеточной активности креатинкиназы на 40%. Образование дуплекса между антисмысловой РНК и мРНК, по-видимому, сопровождалось ингибированием связывания мРНК рибосомами, а также транслокации рибосом в процессе трансляции. Взаимодействие антисмысловых РНК с 5’-концевыми нетранслируемыми последовательностями мРНК может изменять пространственную структуру мРНК таким образом, что инициирующий AUGкодон становится недоступным рибосомам. Не исключено, что в ряде случаев

682

антисмысловые РНК могут блокировать экспорт мРНК из ядра в цитоплазму, особенно когда они присутствуют в молярном избытке. Это также может быть одной из причин подавления синтеза соответствующих белков.

Наилучшие результаты по блокированию экспрессии генов были получены в том случае, когда гены антисмысловых РНК находились в клетках в виде множественных экспрессируемых копий, встроенных в геном, или под контролем сильных промоторов. Дуплексы антисмысловых РНК и мРНК, образующиеся в клетках, которые экспрессируют антисмысловые РНК, являются субстратом для расплетающего фермента (unwindase), который присутствует в клетках всех типов тканей животных. Расплетающий фермент производит дезаминирование 25–40% остатков аденина в обеих цепях дуплекса с образованием инозина. Остатки инозина образуют комплементарные пары с остатками гуанина, поэтому в процессе такой модификации происходит изменение кодирующих свойств мРНК и ее трансляция может приводить к образованию нефункциональных белков. Таким образом, и в данном случае антисмысловые РНК опосредуют инактивацию комплементарных им мРНК, что является еще одним механизмом их ингибирующего действия на экспрессию генов.

9.1.2. Использование антисмысловых РНК

Получение фенокопий. Клетки или организмы, обладающие фенотипом мутантных клеток или организмов, сформировавшимся не вследствие мутаций, называют фенокопиями. Развитие техники антисмысловых РНК позволило исследовать функции отдельных клонированных генов, дифференциально экспрессирующихся в процессе онтогенеза животных. Экспрессия антисмысловых РНК в клетках организма на определенных стадиях его развития может сопровождаться понижением внутриклеточного уровня соответствующих белков или ферментов, что имитирует процесс мутационной инактивации их генов. Одним из примеров использования антисмысловых РНК для получения фенокопий у мышей были исследования роли гена основного белка миелина (ОБМ) в онтогенезе.

Получение трансгенных мышей, экспрессирующих антисмысловые РНК гена ОБМ, который содержался в количестве десяти копий на геном, сопровождалось понижением на 80% внутриклеточного содержания этого

683

белка. Примерно половина потомства мышей приобретала фенотип shiverer через две недели после рождения. Такой фенотип, для которого характерна непрерывная дрожь конечностей, был впервые описан у мышей, гомозиготных по рецессивной мутации в гене ОБМ. Однако для мутантных фенотипов подобных фенокопий была характерна значительная вариабельность, а также имели место мозаицизм в распределении в мозге клеток, содержащих ОБМ (т.е. лишь часть клеток содержала ОБМ), и гетерогенность в отношении уровня экспрессии этого гена. В табл. II.3 суммированы результаты экспериментов по получению фенокопий у мышей, проведенных к 1996 г.

Антисмысловые РНК могут быть использованы и для получения мутантных фенотипов, не описанных ранее из-за отсутствия соответствующих генетических мутантов. Например, введение посредством трансгеноза самкам дрозофилы антисмыслового гена рибосомного белка RpA1, находящегося под контролем промотора теплового шока, сопровождалось нарушением оогенеза при повышенной температуре (37о). При 18o, когда экспрессия антисмысловых РНК резко снижена, уменьшалось и образование дефектных яиц. Проявление мутантного фенотипа в этом случае зависело от времени индукции антисмысловых РНК, дозы (количества) антисмыслового гена и уровня его транскрипции. Таким образом, в данной работе было подтверждено известное наблюдение, что для проявления мутантного фенотипа в некоторых случаях нет необходимости в полной инактивации функции соответствующего гена.

684

Таблица II.3

Влияние экспрессии антисмысловых РНК на фенотип трансгенных мышей

Гены-мишени

Длина

Мишень в

Фенотип

micРНК,

гене

 

 

 

п.о.

 

 

 

 

 

 

Основной белок

1200

Экзоны

Понижение уровня мРНК на

миелина

 

 

≤80%; мыши shiverer

ГФРТ

1390

5'-НТ, экзон 1

Понижение уровня мРНК на

 

 

и интрон 1

20–50%; активность фермента

 

 

 

не изменилась

»

550

То же

Эффект отсутствовал

ψ-Последовательность

540

ψ-Область

Снижение числа лейкозов у

мышиного вируса

 

 

зараженных мышей с 31% до

лейкемии Молони

 

 

0%

Рецептор

1815

3'-НТ

Понижение уровня мРНК в

глюкокортикоидов

 

 

мозге на 50–70%; уменьшение

типа II

 

 

содержания рецептора

β-Цепь

100

5'-НТ и

Понижение уровня мРНК на

иммуноглобулина А

 

инициирую-

 

 

50%; задержка созревания В-

 

 

щий кодон

клеток

Фактор роста нервов

1300

Экзоны

Изменение базального уровня

 

 

 

фактора роста нервов в коже

wnt-1

4700

Экзоны

Понижение уровня мРНК на

 

 

 

≤98%

i2

39

5'-НТ и

Понижение уровня белка в

 

 

инициируюпечени и жировой ткани на

 

 

щий кодон

≤95%, уменьшение скорости

 

 

 

роста тела

 

 

 

685

 

 

 

Таблица II.3 (окончание)

 

 

 

 

Гены-мишени

Длина

Мишень в

Фенотип

micРНК

гене

 

 

 

(п.о.)

 

 

 

 

 

 

 

 

Белок нуклеокапсида

1800

Экзоны

Повышение устойчивости к

вируса гепатита мышей

 

 

вирусной инфекции

GLUT-2

1489

»

Понижение уровня белка

 

 

 

GLUT-2 на 80%

Интерлейкин 3

990

»

Понижение уровня IL-3,

 

 

 

приводящее к развитию

 

 

 

лимфопролиферативных

 

 

 

заболеваний β-клеток

Миниген COLIA1

1200

»

Понижение уровня белка

 

 

 

COLIA1 на 50%, приводящее к

 

 

 

летальной ломкости костей

Ангиотензиноген

1900

»

До индукции промотора –

 

 

 

повышение уровня мРНК в

 

 

 

печени; после индукции –

 

 

 

понижение уровней мРНК в

 

 

 

печени и почках и повышение в

 

 

 

мозге на 20 дней, после чего

 

 

 

уровни нормализуются;

 

 

 

понижение уровня

 

 

 

ангиотензиногена в плазме

 

 

 

через 30 дней после индукции

Глюкокиназа β-клеток

1900

»

Понижение уровня мРНК в β-

 

 

 

клетках, сопровождаемое 50%-

ным снижением активности глюкокиназы, повышение уровня глюкозы в крови

686

Использование антисмысловых РНК для исследования онтогенеза животных выявило высокую чувствительность определенных его стадий к изменению уровня экспрессии генов, а также неспецифическую токсичность антисмысловых транскриптов, проявляющуюся за счет взаимного влияния различных частей ранних эмбрионов друг на друга и гетерогенности экспрессии самих антисмысловых РНК в развивающихся зародышах. Это затрудняет интерпретацию результатов, полученных при экспрессии антисмысловых РНК в раннем эмбриогенезе. Поэтому более удобными объектами для получения фенокопий являются культивируемые соматические клетки животных и растений.

Исследование клеточного цикла. Антисмысловые РНК оказались полезными в исследованиях роли протоонкогенов и факторов роста в пролиферации клеток. С использованием такого подхода были изучены протоонкогены c-fos, c-myc, c-src, антионкоген p53. В норме уровень экспрессии c-myc выше в пролиферирующих клетках, чем в дифференцирующихся. В присутствии антисмысловых олигонуклеотидов наблюдали понижение внутриклеточного уровня белка c-Myc в клетках линии HL60, что сопровождалось понижением скорости роста клеток и усилением миелоидной дифференцировки. Природные антисмысловые c-myc-РНК были обнаружены среди транскриптов клеток мышей. Антисмысловые c-fos-РНК предотвращали повторное вхождение покоящихся клеток 3Т3 (фаза Go) в клеточный цикл.

Противовирусная терапия. Внутриклеточная экспрессия антисмысловых РНК, направленных против мРНК некоторых ключевых вирусных белков, может эффективно подавлять вирусную инфекцию. Этот результат был впервые получен с клетками E. coli, содержащими плазмиды, которые экспрессировали антисмысловые РНК, комплементарные различным участкам генов бактериофага SP. Бактериальные клетки приобретали иммунитет к фагу в наибольшей степени в том случае, если антисмысловые РНК были комплементарны 5’-концевым последовательностям мРНК (включая последовательности Шайна–Дальгарно) гена белка созревания. Менее эффективными оказались антисмысловые РНК, комплементарные мРНК белков оболочки бактериофага или его репликазы. 15-Нуклеотидная антисмысловая последовательность, комплементарная сайту связывания рибосом мРНК, на 94% подавляла выход фага SP и оказывала значительный ингибирующий

687

эффект на развитие родственных фагов Qβ и GA. Эти опыты показали принципиальную возможность использования антисмысловых РНК для борьбы

свирусными инфекциями. Кроме того, высокая специфичность антисмысловых РНК по отношению к вирусным последовательностям нуклеотидов сводит к минимуму возможные цитотоксические и другие побочные действия. Современные методы генной инженерии позволяют вводить гены антисмысловых РНК в клетки зародышевой линии животных и растений, что может обеспечивать наследование этих генов в ряду поколений.

Обнадеживающие результаты были получены в опытах по ингибированию развития вируса саркомы Рауса (ВСР) в клетках перепелов. Антисмысловые РНК, комплементарные мРНК белка оболочки ВСР, на 70–80% предотвращали внутриклеточное развитие ВСР, дефектного по белку оболочки, в присутствии плазмиды, экспрессирующей этот белок, которая без антисмысловой РНК комплементировала развитие дефектного вируса.

Были получены трансгенные растения табака, которые содержали экспрессирующий вектор, направляющий синтез антисмысловой РНК, комплементарной мРНК белка оболочки вируса мозаики огурцов (ВМО). Такие растения оказались устойчивыми к ВМО только при низкой множественности инфекции, а иммунитет к ВМО мог быть преодолен с помощью высоких концентраций инокулируемого вируса. Аналогичные результаты были получены

странсгенными растениями табака, экспрессирующими антисмысловые РНК, комплементарные транскрипту гена белка оболочки X. В этих опытах уровень экспрессии антисмысловых РНК оказался недостаточным для того, чтобы обеспечить полную устойчивость растений к вирусной инфекции, что требует дальнейшей оптимизации условий экспрессии генов антисмысловых РНК в клетках растений.

9.1.3.Природные антисмысловые РНК

За то время, которое прошло с момента открытия в середине 1970-х годов антисмысловых РНК и их успешного использования для искусственной регуляции экспрессии генов, стало ясно, что этот эффектный генноинженерный прием уже давно и широко используется самой природой для тех же целей – модуляции экспрессии генов на молекулярном уровне. В

688

прокариотических системах антисмысловые РНК участвуют в регуляции репликации и поддержании плазмид. Так, в случае плазмиды ColEI инициация ее репликации негативно регулируется с помощью короткой, нетранслируемой антисмысловой РНК. Антисмысловая РНК I плазмиды ColEI также играет ключевую роль в обеспечении несовместимости плазмид, принадлежащих к одной группе совместимости, внутри одной бактериальной клетки (подробнее см. раздел 4.2.2). Похожие механизмы с участием антисмысловых РНК используются и для регуляции репликации плазмид группы IncF1 (NR1, R1 и R6) и IncQ (R1162), а также для регулирования числа копий плазмиды pT181 Staphylococcus aureus. Антисмысловые РНК служат у бактерий для регуляции экспрессии генов на уровне транскрипции (например гена белка-рецептора циклического АМР) и трансляции. В последнем случае антисмысловая РНК micF участвует в подавлении экспрессии белка OmpF внешней мембраны

E. coli.

Экспрессия гена sulA E. coli, кодирующего SOS-индуцируемый ингибитор деления бактериальных клеток, регулируется нетранслируемой РНК, комплементарной на протяжении 250 нуклеотидов 3’-концевой части sulA-РНК. Регуляция на уровне трансляции антисмысловыми РНК имеет место у колицинового (E1) оперона плазмиды ColEI, а также оперона gvpABC цианобактерии Calotrix 7601, которые обеспечивают образование газовых везикул, придающих плавучесть бактериальным клеткам.

Антисмысловые РНК участвуют и в регуляции жизненного цикла бактериофагов. Например, у бактериофага λ обнаружена короткая антисмысловая РНК, комплементарная мРНК гена Q и ингибирующая ее трансляцию. Это приводит к понижению уровня экспрессии поздних генов бактериофага и ингибированию его литического развития. Другой антисмысловой РНК фага λ, участвующей в регуляции экспрессии гена сIIрепрессора, является oopРНК. Эта РНК комплементарна 3’-концевой части транскрипта гена cII и после образования гибрида ингибирует ее трансляцию, вероятно, вследствие расщепления дуплекса РНКазой III клетки-хозяина. Небольшая антисмысловая РНК (sarРНК) участвует в регуляции синтеза антирепрессора фага P22. Та же система регуляции антисмысловых РНК характерна и для некоторых транспозонов. Антисмысловые РНК природного происхождения были обнаружены и в клетках эукариот. Так, наличие

689

небольших ядерных поли(A-)-РНК, комплементарных гену дигидрофолатредуктазы, характерно для ядер клеток мышей. Геномные локусы с генами, транскрибируемыми в двух противоположных направлениях, имеются у мышей, крыс и дрозофилы. Образование антисмысловых РНК отмечено во время латентной инфекции вирусом простого герпеса, а также в семенах ячменя. В последнем случае были идентифицированы антисмысловые РНК, комплементарные мРНК изозимов α-амилазы типов A и B.

Антисмысловые РНК, по-видимому, играют важную роль и в экспрессии ранних генов вируса полиомы. Геном вируса полиомы представляет собой небольшую кольцевую двухцепочечную молекулу ДНК, на которой транскрипция ранних и поздних генов происходит в противоположных направлениях с промоторов, расположенных в межгенной регуляторной области. Соответственно, в результате экспрессии ранних и поздних генов транскрибируются разные цепи ДНК. Терминация транскрипции поздних генов происходит неэффективно на поздних стадиях инфекции, что приводит к образованию в ядрах зараженных клеток гигантских РНК, заключающих в себе многократно повторяющуюся последовательность всего генома. При этом последовательности нуклеотидов таких РНК, соответствующие ранним генам вируса, являются антисмысловыми по отношению к нормальным ранним РНК вируса как продуктам транскрипции противоположной цепи вирусной ДНК. Накопление таких антисмысловых РНК приводит к резкому снижению внутриклеточного уровня ранних РНК, а экспериментальная дестабилизация антисмысловых РНК с помощью мутаций сопровождается значительным его повышением in vivo.

Приведенных примеров достаточно, чтобы сделать вывод о широком распространении антисмысловых РНК в природных условиях, хотя в случае эукариотических организмов физиологическое значение антисмысловых РНК непонятно. Расширение исследований в этой области молекулярной генетики несомненно приведет к открытию новых регуляторных механизмов с участием антисмысловых РНК. В том случае, если регуляторные функции антисмысловых РНК, реализуемые через РНК–РНК-гибриды, будут подтверждены у эукариот, это еще раз укажет на перспективность направления поисков путей искусственной регуляции экспрессии эукариотических генов с

690

использованием антисмысловых РНК у животных и растений. Правильность такого направления уже сейчас подтверждается возможностью получения фенокопий у высших организмов с помощью антисмысловых РНК, а для повышения эффективности их действия необходимо просто оптимизировать условия их биосинтеза в эукариотических клетках. Использование техники антисмысловых РНК позволяет осуществлять высокоспецифическую инактивацию функционирования определенных генов in vivo и становится особенно полезным в тех случаях, когда инактивация соответствующих генов генетическими методами (с помощью мутаций) невозможна. Тем не менее значительная вариабельность в уровнях экспрессии антисмысловых РНК в клетках, содержащих эндогенные антисмысловые гены, а также некаталитический характер действия антисмысловых РНК, требующий их высокой внутриклеточной концентрации, накладывают серьезные ограничения на их применение. В этой связи перспективным направлением представляется использование рибозимов, фланкированных последовательностями антисмысловых РНК. Внутриклеточная стабильность таких макромолекул может быть существенно повышена путем конструирования антисмысловых РНК с оптимально подобранной пространственной структурой, а также использованием аналогов нуклеотидов для модификации этих макромолекул.

9.1.4. Антисмысловые РНК и патология: возможный механизм возникновения доминантных мутаций

Вся совокупность полученных к настоящему времени данных позволяет предполагать, что антисмысловые РНК могут образовываться не только в результате реализации нормальных регуляторных механизмов, но и во время различных патологических состояний организма, выступая одной из причин их возникновения. Действительно, для того чтобы в клетке начали образовываться антисмысловые РНК, достаточно возникновения инверсии кодирующей части экспрессируемого гена, расположенной за промотором, направляющим транскрипцию этого гена. В таком случае может осуществляться инактивация самого гена, в котором произошла инверсия, и будет образовываться антисмысловая РНК, комплементарная нормальной мРНК мутировавшего гена. К аналогичным результатам будут приводить и транслокации кодирующих частей генов (с одновременной инверсией) под контроль промоторов других