
- •Электрические и компьютерные измерения
- •Оглавление
- •Введение
- •1. Термины и определения
- •1.1. Средства измерений
- •1.1.1. Составные части иу
- •1.1.2. Отсчетное устройство ип
- •2. Измерение тока и напряжения
- •2.1. Аналоговые средства измерений
- •2.1.1. Электромеханические приборы
- •2.1.1.1. Приборы магнитоэлектрической системы
- •2.1.1.2. Гальванометры
- •2.1.1.3. Приборы электромагнитной системы
- •2.1.2. Компенсаторы постоянного тока
- •2.1.3. Электронные аналоговые вольтметры
- •2.2. Цифровые электронные вольтметры
- •2.2.1. Цифровой вольтметр с глин
- •2.2.2. Цифровой вольтметр двойного интегрирования
- •3. Измерение параметров элементов электрических цепей
- •3.1. Метод вольтметра-амперметра
- •3.2. Метод непосредственной оценки
- •3.2.1. Электромеханические омметры
- •3.2.2. Электронные омметры
- •3.3. Компенсационный метод измерения сопротивлений
- •3.4. Метод дискретного счета
- •4. Электронно-счетный частотомер
- •4.1. Структура цифрового частотомера
- •4.2. Временные диаграммы работы частотомера
- •4.1. Измерение периода
- •4.2. Измерение отношения частот
- •4.3. Измерение интервала времени
- •4.4. Самоконтроль частотомера
- •5. Измерительные генераторы сигналов
- •5.1. Общие сведения
- •5.2. Низкочастотные генераторы синусоидальных сигналов
- •5.2.1.Lc-генераторы
- •5.2.2. Генераторы на биениях
- •5.2.3.Rc-генераторы
- •5. 3. Принципы построения низкочастотных цифровых генераторов
- •5. 4. Высокочастотные генераторы сигналов
- •5. 5. Импульсные генераторы сигналов
- •5. 6. Цифровые генераторы сигналов специальной формы
- •6. Электронные осциллографы
- •6.1. Универсальные одноканальные электронно-лучевые осциллографы
- •6.2. Основные узлы электронно-лучевых осциллографов
- •6.2.1. Электронно-лучевая трубка
- •6.2.2. Канал вертикального отклонения
- •6.2.3. Канал горизонтального отклонения
- •6.2.3.1. Синусоидальная развертка в осциллографе
- •6.3. Двухканальные электронно-лучевые осциллографы
- •6.4. Скоростные и стробоскопические осциллографы
- •6.4.1. Скоростные осциллографы
- •6.4.2. Стробоскопические осциллографы
- •6.5. Универсальные осциллографы со сменными блоками
- •6.7. Аналоговые запоминающие осциллографы
- •6.8. Цифровые запоминающие осциллографы
- •Принцип работы цзо
- •6.9. Цифровые люминофорные осциллографы
- •7. Виртуальные измерительные приборы и системы
- •7. 1. Общие сведения
- •7.2. Плата сбора данных
- •7.3. Сменные платы специального назначения
- •7.4. Виртуальные мультиметры
- •7.5. Виртуальные цифровые запоминающие осциллографы
- •7.6. Виртуальные генераторы сигналов произвольной формы
- •Список литературы
2.1.2. Компенсаторы постоянного тока
Измерение тока и напряжения аналоговыми электромеханическими приборами возможно в лучшем случае с погрешностью 0,1 %. Более точные измерения выполняют методом сравнения с мерой. Средства измерений, использующие метод сравнения, называются компенсаторами или потенциометрами.
Принцип действия компенсатора основан на уравновешивании (компенсации) измеряемого напряжения известным падением напряжения на образцовом резисторе. Момент полной компенсации фиксируется по показаниям индикаторного прибора (нуль-индикатора).
Упрощенная схема компенсатора постоянного тока приведена на рис. 2.13.
Рис. 2.13. Схема компенсатора постоянного тока
Схема содержит источник образцовой ЭДС Ен, образцовый резисторR0, вспомогательный источник питания ВБ, переменное сопротивлениеR, регулировочный реостатR1и нуль-индикатор НИ. Нуль-индикатором служит обычно гальванометр с нулем посредине шкалы. В качестве источника образцовой ЭДС (меры ЭДС) используется нормальный элемент – изготавливаемый по специальной технологии гальванический элемент, среднее значение ЭДС которого при температуре 20 °С известно с точностью до пятого знака и равноЕн= 1,0186 В. Образцовый резистор представляет собой катушку сопротивления специальной конструкции с точно известным и стабильным сопротивлением.
Процесс измерения напряжения состоит из двух операций: установления рабочего тока и уравновешивания измеряемого напряжения. Для установления рабочего тока переключатель П ставят в положение 1 и, регулируя сопротивление R1, добиваются отсутствия тока в гальванометре. Это будет иметь место в том случае, когда падение напряжения на резистореR0станет равным ЭДС нормального элемента,
.
При этом рабочий ток в цепи R1,R0,R
.
После установки рабочего тока переключатель П устанавливают в положение 2 и, не изменяя рабочего тока, устанавливают такое значение сопротивления R=Rx, при котором измеряемое напряжениеЕxбудет уравновешено падением напряженияIRxи ток в цепи гальванометра снова будет отсутствовать. Отсюда
и
. (2.8)
Из (2.8) следует, что при постоянстве значений EниR0шкала сопротивленияRможет быть проградуирована непосредственно в единицах напряжения постоянного тока.
Поскольку в момент равновесия ток в цепи индикатора отсутствует, то можно считать, что входное сопротивление компенсатора, со стороны измеряемого напряжения, равно бесконечности (Rвх=). Отсюда следует одно из основных достоинств компенсатора – отсутствие потребления мощности от объекта измерения, т.е. возможность измерения ЭДС.
Погрешность компенсатора постоянного тока определяется погрешностями резисторов R,R0, ЭДС нормального элемента, а также чувствительностью индикатора. Современные потенциометры постоянного тока выпускают с классами точности от 0,0005 до 0,2. Верхнийпредел измерения до 1…2,5 В. При достаточной чувствительности индикатора нижний предел измерения может составлять единицы нановольт.
В современных конструкциях компенсаторов вместо нормального элемента часто используются стабилизованные источники напряжения с более высоким значением стабилизированного напряжения, что позволяет расширить верхний предел измерения компенсатора до нескольких десятков вольт. Для измерения более высоких значений напряжения могут быть использованы схемы с делителем напряжения. При этом, однако, утрачивается основное достоинство компенсационного метода – отсутствие потребления мощности от объекта измерения.
Промышленностью выпускаются компенсаторы с ручным и автоматическим уравновешиванием.
Компенсационные методы используются также для измерения на переменном токе.