
4.2. Виды и классификация теплообменных аппаратов
Классификация. Теплообменными аппаратами(теплообменниками) называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями.
Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники: энергетике, химической, металлургической, нефтяной, пищевой и других отраслях промышленности.
В котельном агрегате теплота, выделяющаяся при горении топлива, передается воде и пару, т. е. котельный агрегат представляет собой совокупность теплообменных аппаратов. В атомной силовой установке выделяемая ядерным реактором теплота воспринимается первичным теплоносителем, который сам становится радиоактивным. В двигателе используется вторичный теплоноситель, который получает тепло от первичного в теплообменном аппарате. Процесс регенерации в газотурбинной установке осуществляется путем передачи теплоты в теплообменнике от отработанных продуктов сгорания сжатому воздуху.
Широкое распространение теплообменных аппаратов обусловило многообразие их конструктивного оформления.
Тепловые процессы, происходящие в теплообменных аппаратах, могут быть самыми разнообразными: нагрев, охлаждение, испарение, кипение, конденсация, плавление, затвердевание и более сложные процессы, являющиеся комбинацией перечисленных. В процессе теплообмена может участвовать несколько теплоносителей: теплота от одного из них может передаваться нескольким и от нескольких — одному.
Теплообменные аппараты классифицируются следующим образом:
по назначению — подогреватели, конденсаторы, охладители, испарители, паропреобразователи и т.п.;
принципу действия — рекуперативные, регенеративные и смешивающие.
Рекуперативными называются такие теплообменные аппараты, в которых теплообмен между теплоносителями происходит через разделительную стенку. При теплообмене в аппаратах такого типа тепловой поток в каждой точке поверхности разделительной стенки сохраняет постоянное направление.
Температура нагрева теплоносителя составляет 400... 500°С для конструкций из углеродистой стали и 700...800°С для конструкций из легированных сталей.
В рекуперативных теплообменниках теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер. На рис. 4.1 показан пример рекуперативного теплообменника, в котором один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
Стенка, которая омывается с обеих сторон теплоносителям, называется рабочей поверхностью теплообменника.
Во время соприкосновения с разными теплоносителями поверхность нагрева или получает теплоту и аккумулирует ее, а затем отдает, или, наоборот, сначала отдает аккумулированную теплоту и охлаждается, а затем нагревается. В разные периоды времени теплообмена (нагрев или охлаждение поверхности нагрева) направление теплового потока в каждой точке поверхности нагрева изменяется на противоположное.
В качестве примера на рис. 4.2 представлена схема регенеративного воздухоподогревателя котельного агрегата с медленно вращающимся (2...5 об/мин) ротором — аккумулятором теплоты. Ротор имеет набивку из тонких гофрированных стальных листов (см. рис. 4.2, б), заключенных в закрытый кожух 3. К кожуху присоединяются воздушный и газовый короба. Во время работы теплообмен-
Одним из оригинальных устройств, использующих в качестве промежуточного теплоносителя пар и его конденсат, является герметичная труба, заполненная частично жидкостью, а частично паром (рис. 4.3). Такое устройство, называемое тепловой трубой, способно передавать большие тепловые мощности. На горячем конце тепловой трубы за счет подвода теплоты испаряется жидкость, а на холодном — конденсируется пар, отдавая выделившуюся теплоту. Конденсат возвращается в зону испарения либо самотеком, если холодный конец можно разместить выше горячего, либо за счет использования специальных фитилей, по которым жидкость движется под действием капиллярных сил в любом направлении, даже против сил тяжести (как спирт в спиртовке).
Тепловые трубы с самотечным возвратом конденсата известны давно. Широкое распространение тепловых труб с фитилями началось недавно в связи с необходимостью отвода больших тепловых потоков от мощных, но малогабаритных полупроводниковых устройств. Практически незаменимы тепловые трубы с фитилями в космосе. Для охлаждения механических, электрических или радиотехнических устройств в земных условиях широко используется естественная конвекция. В космосе естественной конвекции не может быть, поскольку отсутствует сила тяжести и нужны иные способы отвода теплоты. Тепловые трубы с фитилями могут работать и в невесомости. Они малогабаритны, не требуют затрат энергии на перекачку теплоносителей и при соответствующем подборе рабочего агента работают в широкой интервале температур.
Смешивающими называются такие теплообменные аппараты, в которых тепло- и массообмен происходят при непосредственном контакте и смешивании теплоносителей. Поэтому смешивающие теплообменники иногда называют контактными. Наиболее важным фактором в рабочем процессе смешивающего теплообменного аппарата является поверхность соприкосновения теплоносителей. В качестве примера на рис. 4.4 показана схема смешивающего теплообменника (деаэратора) для подогрева воды паром при термическом удалении растворенных газов (воздуха).
Основные теплоносители. В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться самые разнообразные газообразные, жидкие и твердые вещества.
С точки зрения технической и экономической целесообразности их применения теплоносители должны обладать следующими качествами.
Иметь достаточно большую теплоту парообразования, плотность и теплоемкость, малую вязкость. При таких характеристиках теплоносителей обеспечивается достаточная интенсивность теплообмена и уменьшаются их массовые и объемные количества, необходимые для заданной тепловой нагрузки теплообменного аппарата.
Иметь необходимую термостойкость и не оказывать неблагоприятное воздействие на материалы аппаратуры. Теплоносители должны быть химически стойкими и неагрессивными даже при достаточно длительном воздействии высоких температур. Желательно, чтобы теплоносители не давали в процессе работы отложений на поверхность теплообмена, так как отложения понижают коэффициент теплопередачи и теплопроизводительность оборудования.
Быть недорогими и достаточно доступными в отечественных ресурсах.
При выборе теплоносителей необходимо в каждом отдельном случае детально учитывать их термодинамические и физико-химические свойства, а также технико-экономические показатели.
В производственных аппаратах и системах отопления и горячего водоснабжения наиболее широкое распространение получили следующие теплоносители.
Водяной пар как греющий теплоноситель получил большое распространение благодаря следующим своим достоинствам.
1- Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.
2. Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое массовое количество его для передачи сравнительно больших количеств теплоты.
3. Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянные режим и регулировать процесс в аппаратах.
Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа.
Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в отопительных и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах, производственных технологических агрегатах (например в печах) или водонагревательных установках ТЭЦ и котельных. Горячую воду как теплоноситель можно транспортировать по трубопроводам на значительные расстояния (на несколько километров). При этом понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1°С на 1 км. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи. Как правило, в системах производственного и коммунального отопления используется горячая вода с температурой 70... 150 (200) "С.
Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного обогрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при загрязнении сажей и золой. Если по условиям эксплуатации загрязнение обрабатываемого материала недопустимо, дымовые газы направляются в рекуперативный теплообменник, где отдают свою теплоту воздуху, а последний нагревает обрабатываемый материал.
Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур, которые требуются иногда по технологическим условиям производства.
Однако дымовые и топочные газы как греющая среда имеют ряд недостатков.
Малая плотность газов влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, а последнее приводит к созданию громоздких трубопроводов.
Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой. Последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов.
Из-за низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.
Высокотемпературные теплоносители. В настоящее время в промышленности для высокотемпературного обогрева, кроме дымовых газов, применяют минеральные масла, органичческие соединения, расплавленные металлы и соли. Характеристика некоторых высокотемпературных теплоносителей приведена втабл. 4.1.
Низкотемпературные теплоносители представляют собой вещества, кипящие при температурах ниже 0 "С. Типичными представителями их являются: аммиак NH3, диоксид углерода СО2, сернистый ангидрид SО2 и большой ряд галоидных производных насыщенных углеводородов, применяющихся в качестве хладоагентов в холодильной технике.
.