- •Министерство образования и науки рф Пермский государственный технический университет
- •Теория автоматического управления
- •Часть 1
- •Содержание
- •1. Основные понятия и определения теории автоматического управления.
- •1.1. Историческая справка
- •1.2. Взаимосвязь тау с другими техническими науками
- •1.3. Основные понятия и определения тау
- •Тау – теория автоматического управления.
- •2. Математическое описание систем автоматического управления.
- •2.1. Основные характеристики объекта управления.
- •Примеры объектов управления
- •2.2. Типовая функциональная схема системы автоматического управления.
- •2.3. Классификация систем автоматического управления.
- •2.3.1. Классификация по характеру динамических процессов в системе
- •1. Непрерывность.
- •2. Линейность.
- •2.3.2. Классификация по характеристикам управления
- •1. По принципу управления.
- •2. По управляющему воздействию (задающее воздействие).
- •3. Свойства в установившемся режиме.
- •2.3.3. Классификация сау по другим признакам
- •2.4. Основные (типовые) управляющие воздействия сау
- •Ступенчатому воздействию соответствует функция
- •2.5. Временные характеристики сау
- •2.6. Частотные динамические характеристики
- •2.7. Типовые динамические звенья
- •2.7.1. Безынерционное звено
- •2.7.2 Апериодическое звено
- •Шаблон поправки
- •Порядок построения лачх апериодического звена
- •Примеры апериодических звеньев
- •2.7.3. Колебательное звено
- •2.7.4. Идеальное интегрирующее звено
- •2.7.5. Реальное интегрирующее звено
- •2.7.5. Изодромное интегрирующее звено
- •2.7.6. Идеальное дифференцирующее звено
- •2.7.7. Реальное дифференцирующее звено
- •2.7.8. Звено чистого запаздывания
- •2.8. Структурные схемы сау
- •Типовые элементы структурных схем сау
- •2.8.1. Многоконтурные структурные схемы
- •2.8.2. Правила структурных преобразований
- •2.8.3. Изображение структурных схем в виде графов
- •3. Устойчивость систем автоматического управления,
- •3.1. Понятие устойчивости по Ляпунову.
- •3.2. Алгебраические критерии устойчивости.
- •3.2.1. Критерий Гурвица Автоматическая система, описываемая характеристическим уравнением
- •3.2.2. Критерий Рауса
- •3.3. Частотные критерии устойчивости
- •3.3.1. Принцип аргумента
- •3.3.2. Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Алгоритм применения критерия Михайлова.
- •Формулировка критерия Михайлова.
- •3.3.3 Критерий Найквиста
- •Алгоритм использования критерия Найквиста
- •3 .4. Сравнительный анализ критериев устойчивости
- •3.5. Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •3.5.1. Устойчивость систем со звеном чистого запаздывания
- •3.6. Структурно устойчивые и структурно неустойчивые системы
- •3.7. Влияние параметров на устойчивость системы. D-разбиение по одному параметру
- •4. Анализ качества сау.
- •4.1. Основные показатели качества сау
- •4.2. Прямые методы оценки качества
- •4.2.3.2. Определение показателей качества по типовым характеристикам
- •4.2.4. Моделирование с использованием вычислительных средств
- •4.3. Косвенные методы оценки качества сау.
- •4.3.1. Частотный косвенный метод оценки качества.
- •4.3.1.1. Построение вещественной частотной характеристики с использованием лачх разомкнутой системы и номограммы.
- •Алгоритм построения вчх по номограмме
- •4.3.2. Корневые методы оценки показателей качества
- •4.3.2.1. Влияние полюсов передаточной функции на качество переходных процессов
- •4.3.2.2. Связь степени устойчивости с быстродействием системы
- •4.3.3.3 Связь колебательности с перерегулированием
- •Смещенные уравнения
- •4.3.4. Влияние нулей передаточной функции на качество переходного процесса
- •4.3.5. Диаграмма Вышнеградского
- •4.4. Интегральный метод оценки показателей качества
- •4.4.1. Линейная интегральная оценка
- •4.4.1.1. Метод Кулебакина
- •4.4.2. Апериодическая интегральная оценка
- •5. Синтез линейных сау.
- •5.1. Особенности синтеза
- •5.2. Этапы синтеза сау
- •5.2.1. Желаемая лачх
- •5.2.1.1. Построение желаемой лачх
- •5.3. Синтез последовательных корректирующих устройств
- •5.4.4. Охват апериодического звена гибкой положительной обратной связью (гжос)
- •5.5. Статические и астатические системы автоматического управления.
- •5.5.1. Передаточная функция типовой одноконтурной системы
- •5.5.2. Ошибки статических и астатических систем при типовых задающих воздействиях
- •5.5.3. Ошибка при возмущающем воздействии, не равном нулю
- •5.6. Чувствительность параметров
- •5 .7. Типовые законы регулирования линейных систем
- •Литература
2.4. Основные (типовые) управляющие воздействия сау
При экспериментальном и теоретическом исследовании автоматических систем и их элементов используют ряд стандартных сигналов, называемых типовыми воздействиями. Эти воздействия описываются простыми математическими функциями и легко воспроизводятся при испытании систем.
Наибольшее применение в теории и практике автоматического управления находят следующие четыре типовых воздействия: ступенчатое, импульсное, гармоническое и линейное.
Ступенчатое
воздействие
– это воздействие, которое мгновенно
возрастает от нуля до некоторого значения
и далее остается постоянным (см. рис.).

Ступенчатому воздействию соответствует функция
![]()
При анализе и расчете систем удобно использовать ступенчатое воздействие, у которого величина а0 = 1. Его называют единичным ступенчатым воздействием (единичным скачком) и обозначают 1(t). Математическое выражение, описывающее единичный скачок, имеет вид
![]()
Ступенчатое воздействие чаще всего используют при испытаниях и расчетах систем стабилизации, так как эти воздействия наиболее близки к реальным входным (задающим и возмущающим) воздействиям систем стабилизации.
Импульсное воздействие представляет собой одиночный импульс прямоугольной формы (см. рис.), имеющий достаточно большую высоту и весьма малую продолжительность (по сравнению с инерционностью испытываемой системы). Очевидно, что площадь такого импульса всегда равна а0.

![]()
причем
![]()
Согласно этим выражениям, дельта – функцию можно рассматривать как импульс, имеющий бесконечно большую высоту, бесконечно малую длительность и единичную площадь. Дельта – функцию можно определить также как производную единичного скачка:
.
В качестве стандартного гармонического воздействия используют обычно сигнал синусоидальной формы, описываемый функцией

где А – амплитуда сигнала;
-
круговая частота, рад/с;
Т – период сигнала, с.
Гармонические воздействия широко используются при исследовании точности и устойчивости как стабилизирующих, так следящих и программных автоматических систем. Это объясняется двумя обстоятельствами: во – первых, реальные возмущения часто имеют периодический характер и поэтому могут быть представлены в виде суммы гармонических составляющих; во – вторых, математический аппарат анализа автоматических систем хорошо разработан именно для случая гармонических воздействий.
Для следящих и программных систем типовым является линейное воздействие (см. рис.)
.

Коэффициент а1 характеризует скорость нарастания воздействия x(t).
2.5. Временные характеристики сау
Наиболее наглядное представление о динамических свойствах элемента дает его переходная функция (характеристика). Переходной функцией h(t) называют изменение выходной величины y(t) во времени, возникающее после подачи на вход единичного ступенчатого воздействия, при нулевых начальных условиях.

![]()
Импульсной переходной функцией (t) называют изменение выходной величины y(t), возникающее после подачи на вход дельта – функции, при нулевых начальных условиях (см. рис.).
И

,
и наоборот, переходная функция равна интегралу от импульсной переходной:
![]()
Переходные характеристики h(t) и (t) называют также временными.
