Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Andrievskaya_N_V_Lektsii_po_TAU.doc
Скачиваний:
256
Добавлен:
29.03.2015
Размер:
2.55 Mб
Скачать

Шаблон поправки

Д

ля построения ЛАЧХ апериодических звеньев в литературе приводится шаблон поправки.

В пределах одной декады ЛАЧХ вокруг частоты с претерпевает наибольшие изменения. Шаблон таких изменений уже вычислен и приведен в литературе.

Порядок построения лачх апериодического звена

  1. Строим асимптотический ЛАЧХ.

  2. Выбирается шаблон поправки, ось ординат которого совмещается с частотой среза асимптотической ЛАЧХ.

  3. По данному шаблону вносятся изменения в асимптотическую ЛАЧХ.

Примеры апериодических звеньев

2.7.3. Колебательное звено

Динамика процессов в колебательном звене описывается уравнением:

,

где k коэффициент усиления звена; Т постоянная времени колебательного звена;  коэффициент демпфирования звена (или коэффициент затухания).

В зависимости от величины коэффициента демпфирования различают четыре типа звеньев:

а) колебательное 0<<1;

б) апериодическое звено II порядка>1;

в) консервативное звено =0;

г) неустойчивое колебательное звено <0.

1. Переходная характеристика колебательного звена:

Амплитуды первых двух колебаний определяют величину -.

Чем ближе коэффициент затухания к единице, тем меньше амплитуда колебаний, чем меньше Т, тем быстрее устанавливаются переходные процессы.

При >1 колебательное звено называется апериодическим звеном второго порядка (последовательное соединение двух апериодических звеньев с постоянными времени Т1 и Т2).

c

, или можно записать так .

Здесь 0 – величина, обратная постоянной времени ();.

Такое звено в литературе называют консервативным звеном.

Все переходные характеристики будут колебаться вдоль величины k.

2. Импульсная переходная характеристика:

3

.Передаточная функция:

4.АФХ:

График АФХ будет выглядеть следующим образом:

Это характеристика для колебательного звена и для апериодического звена второго порядка.

Для апериодического звена - .

А в случае б) формула АФХ совпадает со случаем а).

-

- АФХ для консервативного звена.

5

.АЧХ:

.

АЧХ при частоте имеет максимум (резонансный пик), равный

.

Отсюда видно, что, чем меньше коэффициент , тем больше резонансный пик.

Т

.о., по графику АЧХ видно, что колебательное звено, как и все инерционные звенья, хорошо пропускает сигналы низкой частоты и плохо – сигналы высокой частоты; если частота гармонического входного сигнала близка к частоте собственных колебаний звена, то отношение амплитуды выходного сигнала к амплитуде входного больше передаточного коэффициентаk.

6.ФЧХ:

Для случая б) график будет аналогичным, только перегиб будет чуть меньше (штриховая линия на графике).

7.ЛАЧХ:

, где

Асимптотическая ЛАЧХ колебательного звена:

Определяем наклон на втором участке:

Шаблон к графику а) дается от 0 до 1 шагом в 0,1.

К

онсервативное звено:

Структурная схема колебательного звена будет выглядеть следующим образом:

Примером колебательного звена является любая RLC- цепь.

2.7.4. Идеальное интегрирующее звено

Динамика интегрирующего звена описывается дифференциальным уравнением

.

1. Переходная характеристика:

2. Импульсная переходная характеристика (или функция веса) имеет вид:

3. Передаточная функция идеального интегрирующего звена:

4. АФХ звена:

на комплексной плоскости изображается в виде прямой, совпадающей с мнимой осью.

5. АЧХ:

представляет собой гиперболу, которая при стремится к бесконечности. При увеличении частоты значенияА() стремятся к нулю. Это свойство сближает интегрирующие звенья с инерционными.

6. ФЧХ идеального интегрирующего звена:

показывает, что сдвиг фаз, создаваемый звеном, на всех частотах одинаков и равен

-900.

7. ЛАЧХ:

представляет собой прямую с наклоном –20дБ/декаду, проходящую через точку с координатами =1, L()=20lgk.

П

ример:

И

деальным интегрирующим звеном можно считать (с некоторыми допущениями) гидравлический исполнительный механизм, для которого входной и выходной величиной является количество жидкостиQ3/с), поступающей в единицу времени в полость цилиндра, а выходной величиной – перемещение l (м) поршня со штоком. Действительно, если масса перемещающихся частей пренебрежимо мала и усилие, создаваемое давлением гидронасоса, существенно больше сил сопротивления, то перемещение поршня определяется уравнением баланса жидкости вида

,

где Sплощадь поверхности жидкости (м2), а коэффициент kвыражением

.

Идеальных интегрирующих звеньев в реальных объектах практически не существует.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]