
- •Строение молекул воды. Полярность химической связи. Ионизирующая способность воды.
- •Физические и химические свойства воды. Гидролиз соли.
- •Растворы. Растворимость газов, жидкостей и твёрдых веществ в жидкостях.
- •Электролитическая диссоциация. Константа диссоциации. Теория сильных электролитов.
- •Вычисление ph в растворах сильных и слабых кислот.
- •Вычисление рн в растворах сильных и слабых оснований.
- •Гидролиз солей. Вычисление рн в растворах солей, образованных сильным основанием и слабой кислотой.
- •Вычисление рн в растворах солей, образованных слабым основанием и сильной кислотой.
- •Произведение растворимости. Факторы влияющие на растворимость трудно растворимых электролитов.
- •Коллоидные растворы. Строение мицеллы. Устойчивость и коагуляция коллоидных растворов. Пептизация.
- •Понятие об электрокинетическом потенциале. Электрокинетические явления в коллоидных системах.
- •Характеристики состава природных вод. Классификация природных вод. Характеристики состава сточных вод. Классификация состава.
- •Физические показатели качества воды.
- •Химические показатели качества воды, характеризующие минеральные соли. Ионитовый метод обессоливания
- •Химические показатели качества воды- растворённые газы.
- •Углекислое равновесие в воде. Равновесная и агрессивная углекислота.
- •Стабильность воды.
- •Кислотность и щёлочность воды. Примеси, обуславливающие кислотность и щёлочность. Методы определения.
- •Химические показатели, характеризующие органические вещества.
- •Окисляемость и химическое потребление кислорода хпк.
- •Биохимическое потребление кислорода бпк.
- •Биогенные элементы в воде. Доочистка городских сточных вод от биогенов. Денитрификация.
- •Требования к качеству воды различного назначения.
- •Процесс удаления из воды грубодисперсных примесей.
- •Нейтрализация производственных сточных вод.
- •Метод осаждения примесей.
- •Методы стабилизации воды.
- •Жёсткость воды. Катионитовый метод умягчения воды.
- •Процесс удаления из воды коллоидно-дисперсных примесей 2 группа.
- •Коагулирование воды. Флокуляция.
- •Метод дегазации воды.
- •Метод дезодорации воды.
- •Метод удаления органических веществ 3 группа.
- •Физико-химические методы очистки сточных вод. Экстракция. Эвапорация. Адсорбация
- •Обессоливание воды.
- •Обеззараживание воды хлором.
- •Обеззараживание воды озоном и ионами тяжелых металлов. Безреагентные методы обеззараживания воды.
- •Аэробные процессы окисления в биологической очистке сточных вод.
- •Методы мембранной сепарации в очистке воды.
- •Методы удаления примесей 4 группа.
-
Строение молекул воды. Полярность химической связи. Ионизирующая способность воды.
Особенностью строения молекулы воды (H2O), является уголковая структура. Молекулы расположены под углом 105 град. Это создаёт смещение центров тяжести + и – зарядов. Следствие развитие ядра-молекулярная орбиталь смещается в сторону атома кислорода, создаётся некоторый избыточный заряд. Молекуа воды-диполь(+и-) Такие молекулы называют полярными, а хим. связь- полярной хим. Связью. Степень полярности оценивается величиной дипольного момента. Вода обладает максимальной величиной дипольного момента. Полярность создаёт возможность электростатического взаимодействия воды- водородная связь. Внутриполярной связи молекул воды являются ковалентными, а водородная связь- межмол. Связь- донорно-акцепторной. Вода имеет максимальную диэлектрическую постоянную. Взаимодействие между точечными зарядами снижается. Все аномальные физические свойства воды объясняются полярностью химических связей в молекуле воды, в следствии этого явления- появляется ещё одно важное свойство воды-ионизирующая способность воды.
Строение молекулы воды
а — угол между валентными связями О—Н; б — структура электронного
облака; в — расположение зарядов
-
Физические и химические свойства воды. Гидролиз соли.
Физ. свойства
-
При таянии льда его плотность увеличивается (с 0,9 до 1 г/см³). Почти у всех остальных веществ при плавлении плотность уменьшается.
-
При нагревании от 0 °C до 3,98 °C вода сжимается. Благодаря этому в замерзающих водоёмах: когда температура падает ниже 4 °C, более холодная вода, как менее плотная, остаётся на поверхности и замерзает, а подо льдом сохраняется положительная температура.
-
Вода обладает высокой температурой и удельной теплотой плавления (0 °C и 333,55 кДж/кг), температура кипения (100 °C) и удельная теплота парообразования (2250 КДж/кг ), по сравнению с соединениями водорода с похожим молекулярным весом.
-
Высокая теплоёмкость жидкой воды.
-
Высокая вязкость.
-
Высокое поверхностное натяжение.
-
Отрицательный электрический потенциал поверхности воды.
Эти особенности воды связаны с наличием водородных связей
При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект слабее, чем обычное тепловое расширение; при испарении рвутся все оставшиеся связи.
Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.
Химические свойства
Химические свойства воды определяются особенностями ее строения. Вода довольно устойчивое вещество, она начинает разлагаться на водород и кислород при нагревании по крайней мере до 1000°С ( происходит термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация).
Вода относится к химически активным соединениям. Например, реагирует с фтором. Хлор при нагревании или на свету разлагает воду с выделением атомарного кислорода:
H2O + Cl2 = HCl + HClO (НСlО = НСl + О)
При обычных условиях она взаимодействует с активными металлами:
2H2O + Ca = Ca(ОН) 2 + H2
2H2O + 2Na = 2NaOH + H2
Вода вступает в реакцию и со многими неметаллами. Например, при взаимодействии с атомарным кислородом образуется пероксид водорода:
H2O + O = H2O2
Многие оксиды реагируют с водой, образуя основания и кислоты:
CO2 + H2O = H2CO3
CaO + H2O = Ca(OH)2
При взаимодействии с некоторыми солями образуются кристаллогидраты. При нагревании они теряют кристаллизационную воду:
Na2CO3 + 10H2O = Na2CO3*10H2O.
Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.
Различают несколько вариантов гидролиза солей:
1. Гидролиз соли слабой кислоты и сильного основания:
Na2CO3 + Н2О = NaHCO3 + NaOH
CO32- + H2O = HCO3- + OН-
(раствор имеет щелочную среду, реакция протекает обратимо)
2. Гидролиз соли сильной кислоты и слабого основания:
СuСl2 + Н2О = CuOHCl + HCl
Cu2+ + Н2О = CuOH+ + Н+
(раствор имеет кислую среду, реакция протекает обратимо)
3. Гидролиз соли слабой кислоты и слабого основания:
Al2S3 + 6H2O = 2Al(OН)3 + 3H2S
2Аl3+ + 3S2- + 6Н2О = 2Аl(OН)3(осадок) + ЗН2S(газ)
(Гидролиз в этом случае протекает практически полностью, так как оба продукта гидролиза уходят из сферы реакции в виде осадка или газа).
Соль сильной кислоты и сильного основания не подвергается гидролизу, и имеет нейтральную среду.