Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Строймат экзамен 2 ворд.docx
Скачиваний:
250
Добавлен:
29.03.2015
Размер:
1.11 Mб
Скачать

2.1.1. По происхождению

• природные (существующие в природе): целлюлоза, крахмал, хитин, белки, нуклеиновые кислоты и др.

• синтетические полимеры (не существующие в природе, синтезированные): полиэтилен, полипропилен и др.

• искусственные (модификации природных полимеров, получаемые синтетически): нитроцеллюлоза, бензилцеллюлоза, метилцеллюлоза, ацетатцеллюлоза и др

2.1.2. По областям применения

• пластические массы и органические стекла

• синтетические каучуки

• синтетические и искусственные волокна

• пленки и многочисленные декоративно-защитные покрытия (лаки, краски, эмали)

• биомедицинские материалы.

2.1.3. По топологии (геометрии скелета макромолекул)

2.1.4. По наличию в макромолекуле одного или нескольких типов мономерных звеньев

• гомополимеры, состоящие из мономерных звеньев одного типа;

• сополимеры, состоящие из нескольких различных видов мономерных звеньев (бинарные сополимеры, терполимеры, мультикомпонентные сополимеры).

2.1.5. Химическая классификация

Классификация осуществляется по типу атомов, входящих в цепь:

• органические полимер (в состав входят органогенные элементы – С, N, O, P, S).Делятся на гомоцепные (в основной цепи содержатся только атомы углерода) и гетероцепные (в состав основной цепи входят другие атомы) К этому классу полимеров относятся биополимеры.

• элементоорганические полимеры (в составе основной цепи наряду с атомами углерода находятся атомы Si, Al, Ti, Ge, B).

• неорганические полимеры (в основной цепи не содержатся атомы углерода, например силиконы).

Способы получения полимеров

Синтетические полимеры получают из низкомолекулярных соединений — мономеров — в результате реакции полимеризации и поликонденсации.

Полимеризация — процесс последовательного соединения одинаковых или различных молекул мономеров в одну сложную молекулу высокомолекулярного вещества полимера без образования и выделения побочных низкомолекулярных соединений, вследствие чего элементарный состав полимера и мономера один и тот же. Полимеризацией получают полиэтилен, поливинилхлорид, полиизобутилен, полистирол, полиакрилаты и другие полимеры, широко применяемые в технологии строительных материалов. Различают цепную и ступенчатую полимеризацию. При цепной полимеризации образуемая макромолекула сразу же приобретает конечные размеры, т. е. не возрастает при увеличение длительности процесса. С увеличением продолжительности реакции

растет лишь число макромолекул полимера, мономер расходуется постепенно. Реакцией цепной полимеризации получают такие полимеры, как полипропилен, полиэтилен, полистирол и т. д.

Ступенчатая полимеризация осуществляется путем постепенного, ступенчатого присоединения молекул мономера, которое сопровождается перемещением какого-либо подвижного атома или группы атомов от одних молекул к другим. Реакцией ступенчатой полимеризации получают ограниченное число полимеров, таких как поликапроамид, полиформальдегид, полиуретаны и др. На практике реакция полимеризации проходит в массе, растворе, эмульсии и суспензии.

При полимеризации в массе исходный мономер находится в жидкой фазе в неразбавленном виде (без растворителя или дисперсионной среды). В этом случае образуется твердый полимер (блок) или расплав. Полимеризацию в растворе ведут двумя способами. При реакций первым способом и мономер, и полимер растворяются в среде растворителя; конечным продуктом является раствор полимера (лак). При втором способе растворяется только мономер, а образуемый полимер выпадает в осадок и фильтруется.

При полимеризации в эмульсии мономер диспергируется в водной среде, содержащей водорастворимые инициаторы и эмульгаторы, которые обусловливают устойчивость, как исходной эмульсии мономера, так и образующегося латекса.

Реакция полимеризации в суспензии отличается от реакции в эмульсии тем, что степень диспергирования мономера меньше и частицы образующегося полимера более крупные. Инициаторы растворяются в мономере, поэтому реакцию в суспензии можно рассматривать как микроблочную.

Поликонденсация — процесс соединения молекул одного или нескольких мономеров, в результате которого образуется макромолекула полимера и выделяется низкомолекулярный побочный продукт (вода, спирт, аммиак, хлористый водород).

Реакцию поликонденсации проводят в расплаве, растворе, эмульсии, суспензии, твердой фазе как в присутствии катализаторов, так и без них. Поликонденсацией получают фенолоформальдегидные, карбамидные, фурановые, эпоксидные и другие полимеры

Физические свойства

• плотность

• усадка при литье

Механические свойства

• Прочность (на растяжение и изгиб)

• Модуль упругости

• Удлинение

• Твердость

• Ударная прочность

Тепловые свойства

• Температура изгиба под нагрузкой

• Температура размягчения по Вика

• Температура стеклования

• Коэффициент линейного расширения

Условия переработки

• Показатель текучести расплава

• Температура плавления

• Метод переработки

Оптические свойства

• Светопропускание

• Коэффициент отражения

Электрические свойства

• Поверхностное и объемное сопротивление

• Диэлектрическая постоянная

• Тангенс диэлектрических потерь

Эксплуатационные свойства

• Хемостойкость

• УФ-стабильность

• Стойкость к горению

• Кислородный индекс

• Водопоглощение

Морфология

• Кристалличность

• Ориентация

• Состав (добавки, наполнение, армирование)

Структура и свойства полимеров

Под структурой полимеров понимают взаимное расположение в пространстве макромолекул, образующих полимер. Структура полимера зависит от величины, формы, строения макромолекул и характера взаимодействия между ними и обусловливает важнейшие свойства полимера. В зависимости от строения макромолекул различают три типа полимеров: линейные, разветвленные и пространственные.

Линейные полимеры — это соединения, макромолекулы которых представляют собой длинные цепи. Разветвленные полимеры образованы цепями с боковыми ответвлениями. Число ответвлений и их длина различны. Пространственные полимеры построены из длинных цепей макромолекул, которые соединены между собой в трехмерную сетку посредством поперечных мостиков (химических связей), состоящих из атомов или групп атомов.

Линейные и разветвленные полимеры размягчаются (плавятся) при нагревании и вновь затвердевают при охлаждении. Такое свойство полимеров называется термопластичностью, а сами полимеры — термопластичными, или термопластами. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др. Пространственные полимеры неплавки и нерастворимы; они затвердевают при действии

теплоты и давления и не размягчаются при повторном нагревании. Такие полимеры называют термореактивными, или реактопластами. К этой группе относятся карбамидные, фенолоформальдегидные, эпоксидные и другие полимеры.

Полимеры сочетают свойства газов (по упругости), жидкостей (по тепловому расширению, сжимаемости, текучести) и твердых тел (по способности сопротивляться деформации). Известны два основных агрегатных состояния полимерного вещества — твердое и жидкое. В жидком состоянии полимеры могут иметь аморфную или кристаллическую структуру. Существуют полимеры, структура которых может быть аморфной и кристаллической.

Полимеры кристаллической структуры характеризуются упорядоченностью расположения макромолекул, плотностью их упаковки, а полимеры аморфной структуры — беспорядочным взаимным расположением макромолекул. Различие в строении аморфных и кристаллических полимеров сказывается на их свойствах. Полимеры кристаллической структуры обладают повышенной теплостойкостью, высокой прочностью, жесткостью и плотностью, низкой эластичностью и способностью к деформациям. К таким полимерам относятся полипропилен, полиамиды, полиэтилен низкого давления, натуральный каучук.

Полимеры аморфной структуры обладают одинаковыми физико-механическими свойствами во всех направлениях. Большинство распространенных в промышленности полимеров - полистирол, поливинилхлорид, полиметилметакрилат, поливинилацетат и др. - аморфные.

33)Пластмассы

Пластмассами называются материалы, полу­чаемые на основе искусственных и естественных смол, с различными наполнителями, это материалы, содержащие в качестве важнейшей составной части высокомолекулярные соединения - полимеры.

Связующее вещество (смола) определяет основные свойства пластмасс. Наи­более широко применяют искусственные смолы — про­дукты переработки каменного угля, нефти и других ма­териалов. Ес­тественные смолы (янтарь) и продукты перера­ботки естественных материалов (асфальт) применяются значительно реже. Наполнители – это неорг. или орг. порошки, придающие пластмассам определенные физико-механические свойства: древесная мука, древесный шпон, бумага, ткани, стружка, опилки , а также минеральные вещества: кварцевая мука, тальк, каолин, асбест, стекловолокно, стеклоткань.

Пластификаторы обеспечивают пластмассам пластич­ность, увеличивают текучесть. В качестве их использу­ются низкомолекулярные высококипящие жидкости.

Стабилизаторы повышают термостабильность и свя­зывают побочные продукты. Стабилизаторами служат неорганические (вода, фосфаты) и органические (ами­нокислоты).

Красители придают пластмассам требуемую окраску.

Катализаторы (известь, окись магния) сокращают время отвердевания.

Переработка пластмасс в изделия осуществляется одним из следующих способов: экструзией(формование выдавливанием) ,литьем под давле­нием, формованием в прессформах, формованием в штампах, вакуумным и пневматическим формованием, сваркой, склейкой, механической обработкой.

На выбор способа оказывает влияние вид пластмасс (термореактивные или термопластичные), конфигура­ция и геометрические размеры изделия, вязкость или те­кучесть пластмассы и т. д.

Конструкционные пластмассы в строительстве применяют в составе элементов несущих и ограждающих конструкций сравнительно недавно. К ним относятся:

стеклопластики;

пенопласты;

оргстекло;

винипласт;

воздухо - и водонепроницаемые ткани и пленки;

древесные пластики.

35)Полимерные декоративно-отделочные материалы

Полимерные материалы, иначе пластмассы, композиты, пластики — это композиции определенного состава, полученные на основе полимеров природного или искусственного происхождения.

Преимущества полимерных материалов и изделий:

—        неограниченная сырьевая база для их производства, постоянно пополняемая за счет синтеза новых полимеров с заранее заданными свойствами;

—        невысокая полимероемкость, т.е. невысокий расход смол на единицу готовой продукции;

—        простота переработки полимерных материалов в изделия любого (даже весьма сложного) профиля с образованием минимума отходов;

—        способность полимеров образовывать тонкие прочные пленки;

—        широкие технологические возможности получения материалов и изделий с заданными характеристиками, отвечающими функциональным, эксплуатационным, эстетическим и экономическим требованиям;

—ценный комплекс свойств: сочетание легкости и прочности, водо-, паро- и газонепроницаемость, химическая стойкость, электроизоляционные и диэлектрические свойства, эластичность, неподверженность коррозии и др.;

—способность принимать любую окраску и фактуру.

Полимеры и материалы на их основе имеют ряд недостатков. К ним относятся: недостаточная долговечность, старение, чувствительность к ультрафиолетовому излучению (материал становится жестким, хрупким, растрескивается), низкая тепло- и морозостойкость, малая жесткость и поверхностная твердость, ползучесть, горение, способность накапливать статическое электричество.

Для декоративно-отделочных материалов и изделий наибольшее значение имеют те из перечисленных выше положительных свойств, которые придают им декоративный вид: многообразие форм, размеров, цветовых решений, фактуры.

Известные технологические способы производства позволяют получать полимерные материалы в удобном для производства отделочных и облицовочных работ виде:

—        в виде тонких пленок и полотен различной толщины;

—        в виде изделий: плит, плиток, всевозможных профилей (в т.ч. профильно-погонажных изделий и фигурных деталей, имитирующих отдельные фрагменты лепки);

—        в виде жидко-вязких составов, которые применяются для устройства монолитных покрытий (преимущественно — наливных полов).

При этом следует отметить, что материалы разных видов, но одного назначения, взаимозаменяемы.

Основные полимерные строительные отделочные материалы и облицовочные изделия по назначению подразделяют на группы:

—        материалы и изделия для покрытия полов;

—        материалы и изделия для внутренней отделки и облицовки стен и потолков;

—        изделия для наружной облицовки.

36) Гидроизоляционные и герметизирующие материалы на основе полимеров

Полиизобутиленовая пленка (ПСГ) — рулонный, гидроизоляционный материал, получаемый из полиизобутиленового каучука, газовой сажи и графита. Выпускают также полиизобутиленовую гидроизоляционную пленку УП-50, которую изготовляют из высокомолекулярного полиизобутилена, полиэтилена высокого давления, парафина и наполнителей (сажа, измельченный каменный уголь).

Полиизобутиленовые покрытия отличаются высокими гидроизоляционными свойствами, трещиностойкостью и хорошей адгезией к основаниям. Высокая водонепроницаемость, биостойкость и атмосферостойкость этих покрытий позволяют рекомендовать их Для оклеечной гидроизоляции. Физико-механические свойства покрытий: средняя плотность — 1300 кг/м3, а предел прочности при Разрыве — 0,1 МПа. Кроме того, для гидроизоляции применяют полиэтиленовые и поливинилхлоридные пленки.

ГМП применяют для гидроизоляции подземных сооружений устройства плоских кровель промышленных и гражданских зданий и гидроизоляционных работ.

Герметизирующие материалы (герметики) применяют для уплот-нения швов между панелями и блоками сборных конструкций, заделки стыков трубопроводов и т, п. В настоящее время для этой цели используют герметизирующие мастики и эластичные прокладки, изготовляемые на основе полисульфидных каучуков (тиоколов), резинобитумного связующего и других полимеров.

Полисульфидные (тиоколовые) герметики выпускают в виде двух-компонентных смесей из тиоколовой герметизирующей и вулканизирующей паст. Герметики приготовляют на месте работ путем смешения тиоколовой и вулканизирующей паст с добавлением ускорителя вулканизации и разжижителя. В процессе вулканизации смесь отверждается и образует эластичный, резиноподобный герме-тик, хорошо уплотняющий шов или стык.

Мастика изол — смесь, состоящая из резиновой крошки, битума, кумаронового полимера, наполнителя (асбестового волокна) и антраценового масла (антисептика). Мастику применяют для различных герметизирующих работ как в подогретом до Температуры 80—100°С, так и в холодном состоянии с добавлением разжижителя (бензин, лигроин и т. п.).

Нетвердеющая мастика — герметизирующий материал на основе полиизобутилена, с мягчителем и наполнителем в виде тонкодисперсного минерального порошка. Эту мастику применяют для уплотнения швов между панелями в крупном домостроении с помощью специального шприца.

Кроме мастик для герметизации швов применяют эластичные прокладки в виде пористых или плотных жгутов (пороизол, гернит и др.).

Клеящие синтетические мастики при оптимальном составе обладают повышенной клеящей (адгезионной) способностью, био- и водостойкостью. При креплении полимерных материалов к тем или иным основаниям наиболее широко применяют мастики КН-2 и КН-3, «Перминид», «Синтелакс» и др.

Клеящие каучуковые мастики КН-2 и КН-3 представляют собой пастообразную однородную массу. Мастики изготовляют из хлоро-пренового каучука, инден-кумаронового полимера, наполнителей и растворителей. Мастику КН-2 с содержанием каучука 18—22% по массе используют для приклеивания резинового линолеума, плиток и герметизирующих прокладок; мастику КН-3 с содержанием каучука 11—14% применяют для приклеивания поливинилхлоридного линолеума, нитролинолеума, профильных погонажных изделий и паркета. Клеящие каучуковые мастики являются огне- и взрывоопасными и токсичными материалами.

Мастика «Перминид» представляет собой вязкую пастообраз-массу темно-желтого цвета. Ее изготовляют из композиции еохлорвинилового полимера, пластификатора, растворителя и различных добавок. Она предназначается для приклеивания рулонных плиточных поливинилхлоридных материалов к различным основаниям. Мастика «Перминид» — огне- и взрывоопасный материал, как и мастика КН-3.

Мастика «Синтелакс» — вязкая, пастообразная масса белого цвета, изготовляемая из синтетического латекса, наполнителей и различных добавок. Мастика предназначается для приклеивания рулонных полимерных материалов, поливинилхлоридных и поли-стирольных плиток, а также полимерных материалов для облицовки стен жилых и общественных зданий.

Резина — эластичный продукт вулканизации каучука с наполнителями, мягчителями и другими компонентами. Вулканизация — процесс превращения каучука в резину, чаще всего осуществляемый с помощью серы при нагревании до 130—160°С (горячая вулканизация). В настоящее время путем введения активаторов (ускорителей вулканизации) можно в течение нескольких минут получать вулка-низаты с требуемыми свойствами.

При вулканизации каучука серой его свойства постепенно изменяются. Значительно повышаются эластичность и прочность при растяжении, повышается стойкость к старению, каучук теряет способность растворяться в растворителях, а лишь набухает. Изменение свойств каучука при вулканизации связано с образованием сложной пространственной сетчатой структуры вулканизата. Под влиянием нагрева, действия серы и других структурирующих веществ происходит усложнение молекулярной структуры вулканизата, т. е. появление между молекулами поперечных химических связей («сшивок»).

Важнейшими свойствами резины (вулканизата) являются: большое относительное удлинение при разрыве, уменьшение модуля эластичности, полезная упругость при разрыве и др. В соответствии с кинетической теорией упругости каучука и резин при растяжении происходит как бы распрямление и сближение цепей макромолекул. Однако внутреннее тепловое движение молекул противодействует этим изменениям, поэтому после прекращения действия растягивающих сил образец резины возвращается в первоначальное состояние. Определение механических свойств резины представляет значительную трудность, поскольку они зависят от продолжительности Действия деформирующей силы, температуры испытания и других факторов. Обычно предел прочности резин при разрыве составляет —30 МПа.

37)Тепло и звукоизоляционные материалы

38) Трубы и санитарно-технические изделия

Трубы из пластмасс в последние годы начали широко применяться на монтаже различных трубопроводов в промышленности, а также при сооружении водопроводов, канализации, нефтепроводов, ирригационных систем и т. д. Наибольшее распространение получают у нас полиэтиленовые, поливинилхлоридные, стеклопластиковые трубы и трубы из органического стекла; меньшее — трубы из полипропилена и фенолита. Полипропиленовые трубы хорошо работают при температурах до 100°С, а фенолитовые, устойчивые в эксплуатации, — в условиях химической агрессии. Пластмассовые трубы более долговечны, чем металлические, не подвержены электрохимической коррозии, имеют меньшую массу и теплопроводность, высокую водо- и химическую стойкость. Стоимость устройства трубопровода из пластмассовых труб и его эксплуатация дешевле металлических. Отрицательным свойством пластмассовых труб является их малая теплостойкость; например, поливинилхлоридные трубы непригодны для транспортирования жидкости с температурой выше 60 °С.

Полиэтиленовые трубы изготовляют из полиэтилена высокого давления методом экструзии. Полиэтилен обладает высокими диэлектрическими свойствами, устойчивостью против действия воды, растворов солей, кислот и щелочей, различных масел, незначительным водопоглощением (до 0,1% после 24 ч выдержки); слабо воспламеняется и медленно горит. Полиэтиленовые трубы морозостойки, что позволяет эксплуатировать их в интервале температур от +60 до —80°С; пластичны, поэтому их можно наматывать на барабаны и транспортировать; легко поддаются механической обработке. Клеить их нельзя; к поверхности полиэтилена клей не пристает. Обычно их сваривают горячим воздухом. Для монтажа труб применяют фитинги из легких металлов и винипласта.

Поливинилхлоридные трубы изготовляют из стабилизированного поливинилхлорида — винипласта — и стабилизатора методом непрерывной экструзии или же путем компрессионной сварки листовой заготовки. Отечественная промышленность производит винипласт двух марок: стабилизированный меламином (марка А) н свинцовый глет (марка Б). Для производства труб применяют винилпласт, стабилизированный меламином, который имеет состав (ч. по массе): поливинилхлорид — 100, меламин — 2, трансформаторное масло — 2 и стеарин — 1. Винипласт представляет собой негорючую, непрозрачную массу без запаха, цвета от светло- до темно-коричневого, плотностью 1400 кг/м3, водопоглощением 0,4%, пределом прочности при сжатии 80 МПа, растяжении 50 МПа и изгибе 120 МПа, удлинением при разрыве 20... 15%, теплостойкостью по Мартенсу 65°С. Винипласт стоек против химической агрессии, обладает высокими антикоррозионными и диэлектрическими свойствами. Не разрешается применять винипласт в среде, содержащей ароматические углеводороды и концентрированные кислоты. В винипластовых трубах можно транспортировать жидкости с температурой до 40°С под давлением, а 50...60°С — самотеком. Теплопроводность винипластовых труб в 400 раз меньше стальных. Трубы из винипласта прочно склеиваются различными клеями, свариваются или соединяются с помощью фланцев и накидных гаек. Винипластовые трубы выпускают длиной 1.5...3 м. Применяют винипластовые трубы для устройства водопроводных, канализационных и вентиляционных сетей, а также для транспортирования агрессивных жидкостей и газов. Винипластовые трубы хранят в сухих закрытых помещениях при температуре 10...20°С.

Стеклопластиковые трубы изготовляют на основе полиэфирных полимеров, армированных стекловолокном. Этот материал обладает исключительными механическими и антикоррозионными свойствами и наибольшей прочностью по сравнению с другими пластмассовыми трубами. Он противостоит действию многих кислот, ароматических и алифатических углеводородов и т. п. Производство стекло пластиковых труб может осуществляться различными методами: намоткой на оправку, методом центробежной отливки и непрерывным протягиванием стекловолокна. Наиболее прогрессивным является метод непрерывного протягивания стекловолокна в виде жгутов, покрытых связующим, сквозь формующее устройство. Жгуты стекловолокна, сматываясь с бобин, подсушивают и направляют в ванну для покрытия связующим, а оттуда на распределительное устройство. В формующей камере происходит предварительная полимеризация полимера до желеобразного состояния, с тем чтобы при последующем движении трубы сохранилась ее форма. Далее труба поступает в камеру дополнительной полимеризации, где происходит дальнейшее ее отверждение. Готовую трубу нарезают на куски нужной длины, сортируют и отправляют на склад.

Фитингами называют различные соединительные детали, применяемые при монтаже трубопроводов. Это муфты, угольники, тройники, крестовины, заглушки, футорки, колпачки, сгоны и др. Пластмассовые фитинги и другую арматуру, необходимую для монтажа трубопроводов, изготовляют методом литья под давлением. Применять тот или иной метод соединения пластмассовых трубопроводов нужно с учетом всех свойств полимерного материала, из которого изготовлены трубы. Метод склеивания можно использовать при винипластовом трубопроводе, но нельзя рекомендовать нарезку труб, так как резьбу нужно получать при изготовлении трубы путем вдавливания — она прочнее нарезной. Соединять пластмассовые трубы следует прутковой сваркой и компрессионной, которая является более прочной.

Санитарно-технические изделия из пластмасс имеют красивый цвет, водостойки, легки, прочны и коррозиестойки, устойчивы против растворов кислот и щелочей. К таким изделиям относятся умывальники, ванны, раковины, душевые кабины, вентиляционные решетки, мойки и т. д. Методы изготовления этих изделий различны и зависят от вида используемого полимера и размеров изделия. Крупногабаритные изделия (например, ванны) прессуют методом эластичного пуансона из термореактивных полимеров с наполнителями из слоистых и волокнистых материалов. Мелкие изделия (например, вентиляционные решетки) изготовляют из полистирола и полиметилметакрилата методом литья под давлением. Применение мочевиноформальдегидных полимеров позволяет получать изделия любых светлых тонов до белоснежного цвета.

39) Типы наполнителей,используемые в строительных пластмассах

Наполнителями называют вещества, которые вводят в состав пластмасс с целью придания им необходимых физико-механических свойств, а также облегчения их обработки.

Одни наполнители повышают механическую прочность пластмасс, другие придают ей большую водостойкость, третьи улучшают ее коррозийно-защитные свойства и т.д.

Наполнители, улучшающие какое-либо свойство полимерного мате-риала, называются активными, а не изменяющие свойств – называются инертными.

В качестве наполнителей органического происхождения относятся: древесная мука, получаемая помолом различных отходов деревообработки; растительные волокна; бумага, которая является хорошим наполнителем для слоистых пластиков, используемых в производстве конструкционных пластмасс; хлопчатобумажные ткани, применяемые для производства текстолита; древесный шпон.

К неорганическим наполнителям относятся асбестовое волокно и бумага и листах и рулонах, стеклянное волокно и ткань, минеральные порошки. Волокнистые наполнители в пластмассах служат арматурой, что дает возможность значительно увеличить прочностные характеристики пластмасс и уменьшить их хрупкость. Особенно эффективно применение стеклянного волокна.

40,41) Классификация и свойства теплоизоляционных материалов

К теплоизоляционным материалам относятся строительные материалы и изделия, предназначенные для тепловой изоляции ограждающих конструкций зданий и сооружений, технологического оборудования и трубопроводов. Такие материалы имеют низкую теплопроводность (при температуре 25°С коэффициент теплопроводности не более 0,175 Вт/(м°С)) и плотность (не выше 500кг/м³). Основная техническая характеристика теплоизоляционных материалов - это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м² при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(мК) или Вт/(м°C). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала. Кроме этого, важными дополнительными свойствами теплоизоляционных материалов являются - прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.

Классифицируем теплоизоляционные материалы

Теплоизоляционные материалы и изделия можно систематизировать по основным признакам:

• По виду исходного сырья: неорганические (минеральная и стеклянная вата, ячеистые бетоны, материалы на основе асбеста, керамические и др.) и органические (древесно-волокнистые плиты, пенно- и поропласты, торфяные плиты и пр.). Также изготавливаются комбинированные материалы, с использование органических и неорганических компонентов.

• По структуре: волокнистые (минеральная , стеклянная вата, шерсть и пр.), ячеистые (ячеистые бетоны и полимеры, пенно- и газокерамика и пр .) и зернистые или сыпучи (керамический и шлаковый гравий, пемзовый и шлаковый песок и пр.

• По форме: рыхлые (вата, перлит и др.), плоские (плиты, маты, войлок и др.), фасонные (цилиндры, полуцелиндры, сегменты и др.), шнуровые (шнуры из неорганических волокон: асбестовые, минерального и стеклянного волокна).

• По возгораемости (горючести): несгораемые (керамзит, ячеистые бетоны и др.), трудносгораемые (цементно-стружечные, ксилолит) и сгораемые (ячеистые пластмассы, торфоплиты, камышит и пр.)

• По содержанию связующего вещества: содержащие связующее вещество (ячеистые бетоны, фибролит и пр.) и не содержащие связующее вещество (стекловата, минеральное волокно).

 

Строительные и теплофизические свойства

Маркировку теплоизоляционных материалов связывают с их плотностью. Поэтому основным показателем качества таких материалов является их марка плотности: D15-35-50-100-125-150-175-200-250-300-350-400-500-600.

Пористые теплоизоляционные материалы

Пористые материалы получили наибольшее распространение в строительстве. Считается, что чем больше объем пор, тем теплопроводность меньше, это связано с тем, что самой малой теплопроводностью обладает воздух (0,023Вт/м°С). Но теплопроводность зависит не только от объема, но и от размеров пор, их формы, а также характера пористости и пр. В крупных порах конвективный теплоперенос происходит интенсивнее по сравнению с мелкими, в которых воздух при наличии теплового градиента может оказаться неподвижным и теплопроводность его минимальная. Поэтому при формировании пористой структуры технологические приемы всегда направлены на получение, по возможности, более мелких, равномерно расположенных пор по всему объему материала. Характер пористости оказывает решающее влияние на акустические и теплоизоляционные свойства пористого материала. При замкнутой пористости материал относится к теплоизоляционным, а при сквозной (в определенных пределах) – к звукопоглощающим. Такие свойства могут быть улучшены также путем специальной обработки поверхностей изделий и образования отверстий в теле материала.

Волокнистые теплоизоляционные материалы

Волокнистое строение характерно для материалов на основе минерального (минеральная и стеклянная вата) или органического волокна (древесное, полимерное, животное). Минеральные волокна получают путем расплавления неорганического сырья с последующим превращением расплава (путем распыления, вытягивания через фильеры или другими способами) в волокна, а органическое – путем расщепления древесины или другого растительного сырья на волокна до минимально возможного диаметра. Выполнение такой операции осуществляется на достаточно сложном оборудовании и обычно связано с большой затратой энергии.

Теплоперенос в волокнистых материалах осуществляется за счет переноса тепла от одного волокна к другому (кондукционный - передача тепла от одного объекта другому при прямом контакте), а также конвективным переносом воздуха, заключенным между волокнами. Поэтому с уменьшением толщины волокон теплоперенос затрудняется, так как при передаче тепла от одного волокна к другому затрачивается тепловая энергия: чем тоньше волокно, тем больше таких контактов, тем больше потери тепла при его переносе по направлению теплового градиента. При тонковолокнистой структуре воздух находится в виде тонких прослоек неправильной формы, что также затрудняет теплоперенос в такой структуре за счет конвективного теплопереноса. Оптимальной считается структура по возможности с более тонкими волокнами. Для неорганических материалов обычно размер волокон ограничивается величиной 5-8мк, так как при меньшем диаметре волокно получается ломким. Для органических материалов диаметр волокон зависит от природы исходного материала и в ряде случаев может быть значительно меньше. Теплопроводность волокнистых материалов зависит также от направления потока теплоты. Например, для дерева теплопроводность вдоль волокон примерно в 2 выше, чем поперек. Увлажнение и тем более замерзание воды в порах материала ведет к резкому увеличению теплопроводности, поскольку у воды она равна 0,58 Вт/м°С, т.е. примерно в 25 раз больше, чем у воздуха; а теплопроводность льда равна 2,32 Вт/м°С, в 100 раз больше, чем у воздуха.

Свойства теплоизоляционных материалов

Температуростойкость оценивают предельной температурой применения материала. Выше этой температуры материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загораться. Предельную температуру применения устанавливают несколько ниже значения температуростойкости в целях предосторожности, и указывают в технической характеристике материала. Теплоемкость имеет существенное значение в условиях частых теплосмен, так как в этих условиях необходимо учитывать теплоту, поглощаемую (аккумулированную) теплоизоляционным слоем. Теплоемкость неорганических материалов колеблется от 0,67 до 1 кДж/кг°С. С увеличением влажности материала его теплоемкость резко возрастает, т.к. для воды при 4°С она составляет 4,2 кдж/кг°С. Увеличение теплоемкости отмечается и при повышении температуры. Огнестойкость характеризует сгораемость материала, т.е. его способность воспламеняться и гореть при воздействии открытого пламени. Сгораемые материалы можно применить только при осуществлении мероприятий по защите от возгорания и возможности использования средств пожаротушения. Возгораемость определяется при воздействии температуры 800-850°С и выдержке в течение 20 мин.

Физико-механические свойства

Плотность для жестких материалов – отношение массы сухого материала к его объему, а плотность волокнистого – это отношение массы сухого материала к его объему, но определенному при заданной нагрузке. Прочность при сжатии определяется при 10% деформации. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Прочность теплоизоляционных материалов вследствие их пористого строения относительно невелика. Предел прочности при сжатии обычно колеблется от 0,2 до 2,5 МПа. Материалы, у которых прочность выше 0,5 МПа, называют теплоизоляционно-конструктивными и используют для несущих ограждающих конструкций. Для некоторых видов теплоизоляционных материалов основной характеристикой является предел прочности при изгибе (плиты, скорлупы, сегменты) или при растяжении (маты, войлок, асбестовый картон и пр.) Во всех случаях требуется, чтобы прочность теплоизоляционного материала была достаточной для его транспортирования, сохранности, монтажа и работы в конкретных эксплутационных условиях. Сжимаемость – способность материала изменять толщину под действием заданного давления. Материалы по сжимаемости мягкие М: деформация свыше 30%. Полужесткие ПЖ – деформация 6-30%, жесткие – деформация не более 6%. Сжимаемость характеризуется относительной деформацией материала при сжатии под действием удельной 0,002 МПа нагрузки. Водопоглощение значительно ухудшает теплоизоляционные свойства и понижает прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, имеют низкое водопоглощение (менее 1%). Для уменьшения водопоглощения, например, при изготовлении минераловатных изделий зачастую вводят гидрофобные добавки, которые позволяют уменьшить сорбционную влажность в процессе эксплуатации. Газо- и паропроницаемость учитывают при применении теплоизоляционного материала в ограждающих конструкциях. Теплоизоляция не должна препятствовать воздухообмену жилых помещений с окружающей средой через наружные стены зданий. В случае повышенной влажности производственных помещений теплоизоляцию защищают от увлажнения с помощью надежной гидроизоляции, укладываемой с «теплой» стороны. Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия или обрабатывая их антисептиками. Высокопористое строение теплоизоляционных материалов способствует прониканию в них жидкостей, газов и паров, находящихся в окружающей среде. Взаимодействие их с материалом может вызвать его разрушение. Органические материалы или материалы, содержащие в своем составе органические компоненты (связующие вещества, крахмал, клей и пр.) или волокнистые наполнители (древесное волокно), должны обладать биологической стойкостью. При увлажнении таких материалов возникает опасность разрушения их грибками или микроорганизмами. Поэтому при использовании теплоизоляционных материалов в местах, которые подвержены увлажнению, в процессе эксплуатации необходимо обрабатывать их антисептиками. При использовании теплоизоляционных материалов в ограждающих конструкциях они могут подвергаться воздействию попеременного замораживания и оттаивания, что может привести к их разрушению, и потере в связи с этим , теплозащитных свойств. Главным условием обеспечения работоспособность таких конструкций является защита теплоизоляционного материала от увлажнения, которая может произойти за счет миграции влаги (от «теплого» к «холодному») и конденсации водяных паров, которая наиболее интенсивно происходит в холодное время года.

Структура материала оказывает существенное влияние на его теплозащитные свойства. Особенно наглядно это проявляется в материалах волокнистого строения. Например, теплопроводность древесины вдоль волокон приблизительно в 2 раза больше теплопроводности поперек волокон. Для характеристики теплоизоляционных свойств материалов, применяемых в виде засыпок, большое значение имеет крупность зерен. С уменьшением размера зерен теплозащитные свойства материала улучшаются, что имеет  место даже  в том  случае,  если  плотность  его  остается.

неизменной.

Таким образом, рассматривая общий характер строения теплоизоляционных материалов, можно сделать вывод, что малую теплопроводность материалам придают поры, когда они заполнены воздухом, но если поверхность этих пор будет покрыта пленкой воды или поры будут заполнены водой, то теплоизоляционные свойства материалов резко снижаются. Это происходит потому, что вода имеет большую теплопроводность, нежели воздух (примерно в 25 раз). Поэтому при эксплуатации теплоизоляционные материалы необходимо защищать от увлажнения.

42)Минеральные теплоизоляционные материалы и изделия

К естественным материалам минерального происхождения относят легкие ячеистые камни: пемзу, туф, известняки, ракушечник и др. Это материалы низкой эффективности, применяемые как местные строительные и одновременно теплоизоляционные материалы при строительстве небольших холодильников.

Для изоляционных конструкций крупных холодильников большое распространение получили искусственные минеральные изоляционные материалы, относящиеся к группе эффективных материалов. Минеральные изоляционные материалы более прочны, менее гигроскопичны, менее подвержены гниению, поражению грибками, грызунами, менее возгораемы, чем материалы органического происхождения.

Для изоляции наружных и внутренних ограждений холодильника, а также изоляции трубопроводов и аппаратов применяют изделия из минеральной и стеклянной ваты.

Минеральная вата получается из доменного шлака, доломито-глинистого мергеля, доломита, базальта и др.

Сырье для получения минеральной ваты расплавляют при температуре 1300—1400° и в струю расплавленного материала под давлением 0,8 Мн/м2 подают пар или горячий воздух, раздувающий его на тонкие нити толщиной от 10 до 50 мм. В нитях попадаются застывшие стекловидные горошины (корольки). Чем больше корольков, тем хуже качество ваты, тем больше ее объемный вес. Примерно также получают стекловату. Минеральную и стеклянную вату применяют как засыпной изоляционный материал. Эти материалы дают большую усадку и вызывают затруднения при производстве изоляционных работ, забиваясь в кожу и попадая в дыхательные пути.

Минеральный войлок изготовляют из минеральной ваты на битумной или фенол-формальдегидной связке. Размеры полотнищ: длина от 1000 до 3000 мм, ширина от 375 до 1200 мм, толщина 20, 40 и 60 мм. Применяют для изоляции холодильных трубопроводов и оборудования.

Минеральная пробка изготовляется из минеральной ваты, обработанной нефтебитумной эмульсией при давлении 0,03— 0,04 Мн/м2. Отпрессованные плиты высушивают при температуре 140°С. Применяют в виде плит или фасонных изделий. Размеры плит: длина 1000 мм, ширина 500 мм, толщина 50 мм.

Минеральная пробка обладает малой гигроскопичностью, почти не горит, не гниет, не поражается грибками и грызунами. Используется для изоляции наружных и внутренних ограждений холодильников и для изоляции трубопроводов и оборудования.

Стеклянный войлок представляет собой маты, состоящие из тонких коротких (штапельных) нитей, обработанных для связки синтетическими (фенольно-формальдегидными) смолами, реже битумом. Стеклянный войлок не восприимчив к влаге, не имеет запаха, биостоек, недорог по стоимости. Теплоизоляцию из стеклянного войлока широко применяют в домашних холодильных шкафах.

Пенобетон относят к материалам средней эффективности. Это пористый бетон, изготовленный из цементного молока с пеной из канифольного мыла. Для стойкости пены при схватывании бетона в нее добавляют столярный клей. Полученный раствор выливают в формы, где происходит схватывание цемента и испарение воды. Пенобетон неустойчив, в условиях переменных температур дает усадку, что приводит к образованию трещин в блоках.

Более устойчив «пропаренный» пенобетон, твердение которого в формах происходит в паровой камере, где 16—20 часов формы с пенобетоном находятся в атмосфере насыщенного пара.

Наилучшим является «автоклавный» пенобетон, твердение которого происходит в автоклавах. Пенобетон не горит, не гниет, не поражается грибками и грызунами, мало гигроскопичен, выпускается в виде блоков различной толщины. Применяют для изоляции наружных стен холодильника, но главным образом для выполнения перегородок между камерами. Пенобетон в этом случае является одновременно строительным и изоляционным материалом. Применять его следует для помещений с нулевыми и положительными температурами, так как в условиях низких температур пенобетон дает трещины.

Газостекло (или пеностекло) изготовляют в виде пористых блоков размером 450×350×100 мм из отходов стекольного производства. Бой стекла измельчают, смешивают с порошкообразным древесным углем или известняком (которые служат газообразо-вателем), высыпают в формы и нагревают до температуры 700— 900° С. Газообразователь выделяет газ, который раздувает ячейки в вязкой стеклянной массе. Газостекло изготовляют в виде блоков размерами 500×500 мм и толщиной от 60 до 120 мм. Газостекло не горит, не гниет, не подвергается действию грызунов, грибков. Применяют как изоляционный материал для изоляции наружных стен холодильника и как строительный материал для перегородок между камерами.

Шлаки котельные и доменные применяют для изоляции полов холодильников, расположенных на грунте, а также в виде засыпной изоляции для малоответственных холодильных сооружений. Лучшими являются доменные гранулированные шлаки, полученные путем быстрого охлаждения водой при выпуске их из домны.

Альфоль представляет собой листы мятой или гладкой фольги толщиной 7—20 мк, натянутые на расстоянии 8—10мм друг от друга. Высокие изоляционные свойства полученного материала являются следствием малой теплопроводности воздушных прослоек и большой отражающей способности блестящей поверхности альфоля. Альфоль негигроскопичен, огнестоек, не имеет запаха.

Основной недостаток альфоля — малая механическая прочность и коррозия в среде влажного воздуха.