
- •1.Химическая технология, химическое производство, химико-технологический процесс. Основные технологические компоненты: сырье, целевой и побочный продукты, отходы.
- •Основными источниками водоснабжения промышленности предприятии служат грунтовые и поверхностные воды. К поверхностным водам относятся: реки, озера, искусственные водохранилища и каналы.
- •5.Энергетические ресурсы и энергоемкость химического производства. Пути эффективного использования энергетических ресурсов. Энерготехнологические схемы использования теплоты химических реакций.
- •9. Термодинамика и возможность химических превращений.
- •14.Аппаратурное оформление обратимых экзотермических реакций. Обоснование уст-ройства реакторов.
- •17.Гомогенные и гетерогенные химические процессы. Особенности гетерогенного химического процесса. Определение лимитирующей стадии.
- •18.Модели гетерогенных процессов в системах г (ж) - т: сжимающаяся сфера (горение беззольного угля); сжимающееся (невзаимодействующее) ядро (окисление колчедана).
- •19.Влияние условий (параметров) гетерогенного процесса «сжимающаяся сфера» на область протекания и скорость превращения. Интенсификация процесса.
- •20.Аппаратурное оформление процессов в системе г — т как фактор интенсификации процессов.
- •21. Процессы в системе жидкость твердое (ж-т)
- •22. Гетерогенный процесс г-ж. Режимы и пути интенсификации процесса
- •24. Промышленный катализ. Сущность каталитического действия. Виды катализа
- •29. Время контакта. Интенсивность катализатора. Выбор оптимальных условий для каталитических процессов. Интенсификация процесса.
- •31. Материальный баланс элементарного объема реактора в дифференциальной форме. Материальный баланс реакторов для стационарного и нестационарного режимов их работы.
- •32. Характеристические уравнения для моделей реакторов рис – п, рив и рис – н и их использование для расчета объемов реакторов.
- •33.Адиабатический, изотермический и политропический тепловые режимы для моделей реакторов рис - п, рив и рис – н
- •34.Каскады реакторов. Неидеальные режимы в реакторах. Динамическая характеристика реакторов.
- •35.Сравнение реакторов различного типа по интенсивности. Промышленные химические реакторы.
- •27.Требования к размерам зерен и пористости катализатора в зависимости от области протекания гетерогенно-каталитического процесса.
- •25. Технологические характеристики твердых катализаторов: активность, температура зажигания, селективность, структура, состав. Требования, предъявляемые к катализаторам.
- •26. Гетерогенно-каталитические процессы. Стадии и области протекания процессов. Макрокинетика гетерогенно-каталитических процессов.
- •28.Макрокинетика гетерогенно-каталитических процессов. Типы адсорбции. Скорость превращения на поверхности катализатора.
32. Характеристические уравнения для моделей реакторов рис – п, рив и рис – н и их использование для расчета объемов реакторов.
Реактор идеального смешения периодический (РИС-П). Это реактор периодического действия с перемешивающим устройством. Перемешивание в таком реакторе настолько интенсивное, что в каждый данный момент времени концентрация реагентов одинакова по всему объему реактора и меняется лишь во времени по мере протекания химической реакции.
Математической моделью РИС-П является его характеристическое уравнение. Исходя из этого уравнения, представляется возможным установить размеры реактора, а также исследовать эту модель с точки зрения определения оптимальных значений всех параметров, входящих в характеристическое уравнение.
Исходным соотношением для получения характеристического уравнения реактора, как уже отмечалось, является уравнение материального баланса в дифференциальной форме.
В РИС-П все параметры (в том числе и концентрация СА реагента А) одинаковы по всему объему реактора в любой момент времени, так как реакционная смесь интенсивно перемешивается. Производная любого порядка от концентрации по х, y, z равна нулю, поэтому можно записать
;
С учетом полученных значений уравнение упрощается и может быть записано не в частных производных, а в виде обыкновенного дифференциального уравнения:
При
выражении скорости реакции по исходному
веществу А
.
Поэтому перед
иvA
ставят знак «–», чтобы скорость являлась
положительной величиной.
Реакторы непрерывного действия (проточные реакторы): реактор идеального смешения (РИС-Н) и реактор идеального вытеснения (РИВ). В реакторах непрерывного действия питание их реагентами и отвод продуктов реакции осуществляется непрерывно.
Если в периодическом реакторе можно непосредственно (по часам) измерить продолжительность реакции, так как показатели процесса меняются во времени, то в реакторе непрерывного действия это сделать невозможно (при установившемся режиме параметры не меняются со временем). Поэтому для непрерывных реакторов удобней пользоваться понятием условного времени пребывания реагентов в системе (времени контакта), которое определяется уравнением
τ
=
где τ – время пребывания; Vр – объем реактора; V0 – объем реакционной смеси, поступающей в реактор в единицу времени (объемный расход реагентов), измеренный при определенных условиях.
Для получения характеристического уравнения РИВ исходят из дифференциального уравнения материального баланса (63), упрощая его на основе указанных выше особенностей этого реактора. Поскольку в РИВ реакционная смесь двигается только в одном направлении (по длине l), то для первой группы членов правой части уравнения (63) можно записать (выбрав за направление оси Х направление движения потока реагентов в реакторе):
где W – линейная скорость движения реакционной смеси в реакторе; l – длина пути, пройденного элементом объема реакционной смеси в реакторе.
Непрерывный реактор идеального смешения (РИС-Н) – это реактор с мешалкой, в который непрерывно подают реагенты и выводят из него продукты реакции.
Это характеристическое уравнение реактора идеального смешения. Для более общего случая, когда начальная степень превращения хА0 не равна нулю, оно записывается