
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2. Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Приборы рефрактометрического анализа.
- •5. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •6. Физ. Основы поляриметрического метода.
- •7. Зав-мость угла вращения плоскости поляризации от строения в-ва.
- •10. Физ. Основы нефелометрии и турбидиметрии.
- •11. Приборы нефелометрического анализа.
- •12. Применение нефелометрии и турбидиметрии.
- •13. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •14.Физ. Основы спектрального анализа.
- •15. Типы и хар-тер электронных переходов.
- •16. Зависимость числа доп.Энерг.Сост. От положения в таблице.
- •17. Классиф. Хим.Элементов по способности к возбужд. И иониз.
- •18. Схемы энергетических переходов в атомах.
- •20. Зависимость длин волн рез.Спектр.Линий от полож.В таблице.
- •22. Факторы, влияющие на интенсивность спектр.Линий в спектрах атомной эмиссии.
- •23. Ширина спектральной линии. Причины уширения.
- •24. Схемы энергетических переходов в молекулах.
- •26*. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •25. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •28. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •29. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •30. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •31. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •33. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •34. Полуколич. Метод сравнения в атомно-эмиссионном анализе.
- •35. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •36. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе.
- •32. Уравнение Ломакина-Шейбе.
- •37. Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •38-39. Общие положения теории аас.
- •41. Пламенная атомизация в атомно-абсорбционном анализе: условия проведения, механизм
- •29. Монохроматоры
- •39. Конструкция и принцип действия безэлектродной газоразрядной лампы.
- •30. Детекторы
- •26. Подготовка проб к анализу методами оптической атомной спектроскопии
- •45. Физические основы рентгеноспектрального анализа.
- •46. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •47. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •48. Основы кач-го и кол-го рентгеноспектрального анализа
- •49. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
- •50. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
36. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе.
Методы количественного атомно-эмиссионного анализа подразделяются на: полуточные и точные количественные.
В зависимости от точности оценки интенсивности спектральных линий :
- визуальные (оценка интенсивности проводиться на глаз);
-фотографические (по величине почернения фотопластинки в месте расположения на ней спектральной линии);
-фотоэлектрические (интенсивность измеряется с помощью фотоэлемента или ФЭУ).
В полуколичественном методе появления и исчезновения спектральных линий сначала с помощью эталонов устанавливают, при каких концентрациях появляются или исчезают те или иные чувствительные линии элементов, а затем, опираясь на полученные данные, находят ориентировочное содержание элементов в пробе. При этом используется несколько аналитических линий определяемого элемента разной интенсивности.
Если, например, в спектре реальной пробы имеются три первые линии (283,99; 303,41; 326,23 нм) указанной интенсивности, считают, что концентрация олова в образце составляет 0,01 % и Т.В.
32. Уравнение Ломакина-Шейбе.
Количественный спектральный анализ основан на зависимости интенсивности спектральных линий определяемых элементов от концентрации этих элементов в анализируемой пробе.
В атомно-эмиссионном анализе зависимость интенсивности I линий характеристического спектра от концентрации С элемента в пробе выражается эмпирической формулой Ломакина–Шей6е
I=aCb
где а – коэффициент, зависящий от режима работы источника возбуждения, его стабильности, температуры и т.п.;
b – коэффициент, учитывающий реабсор6цию или самопоглощение, т.е. поглощение квантов, испускаемых возбужденными атомами, атомами невозбужденного вещества;
I- интенсивность спектральной линии определяемого вещества.
Таким образом, в простейшем случае при b = 1
I = а С, т.е. между интенсивностью и концентрацией имеется простая линейная зависимость: При b ≠1
1g I =1g а + b 1g С, т.е. линейной зависимостью связаны логарифм интенсивности и логарифм концентрации С.
Однако непосредственно по этим формулам вычислить концентрацию нельзя, Т.К. коэффициенты а и b могут быть определены только опытным путем для каждого отдельного случаи.
В практике количественного спектрального анализа для того, чтобы снизить требования к постоянству условий возбуждения, т.е. снизить влияние коэффициента «а» в уравнении Ломакина–Шей6е, обычно используют не интенсивность отдельной линии, а отношение интенсивностей двух спектральных линий, принадлежащих разным элементам. В начальный период развития методов количественного спектрального анализа, когда еще не было стабильных источников возбуждения, использование относительных интенсивностей было практически единственным путем получения воспроизводимых результатов.
Линию определяемого элемента обычно называют аналитической линией, и ее интенсивность обозначают как Iа или Iпр. – интенсивность линии примеси.
Вторую линию часто называют линией сравнения и обозначают ее интенсивность как IC. Если линия принадлежит основному компоненту пробы (основе), ее называют линией основы, а ее интенсивность обозначают как Ioсн. Например, при анализе сталей, это чаще всего интенсивность линии спектра железа. Иногда в пробу вводят спектральный элемент – внутренний стандарт, спектральную линию которого используют в качестве линии сравнения.
Линию сравнения выбирают так, чтобы относительная интенсивность не зависела от условий атомизации и возбуждения. Линии, отвечающие этому требованию, называют гомологичными. Они должны удовлетворять следующим условиям: – иметь как можно более близкие энергии возбуждения;
принадлежать атомам или ионам одинаковой кратности;
относиться к спектрам элементов, имеющих близкие энергии ионизации, температуры плавления и кипения, а также близкие химические свойства.
Для точных измерений относительной интенсивности обе линии должны различаться по интенсивности не более, чем в 10 раз, а длины волн сравниваемых линий различаться не более, чем на 100 А°.
Коэффициент b в уравнении Ломакина–Шей6е, как правило, увеличивается по мере увеличения концентрации определяемого элемента в пробе. Поэтому зависимость I от С становится менее выраженной и точность анализа снижается. значение коэффициента b определяется главным образом реабсорбцией аналитической линии, снижающей ее концентрационную чувствительность. У резонансных линий спад концентрационной чувствительности проявляется при меньших концентрациях, чем у менее интенсивных линий (при прочих равных условиях). Поэтому для точных количественных определений средних и высоких концентраций следует пользоваться нерезонансными линиями.
В эмиссионном анализе линейная зависимость интенсивности спектральных линий сохраняется при относительно не6ольпшх изменениях концентрации, составляющих примерно один порядок; при очень малых концентрациях область линейности увеличивается. Точность эмиссионного анализа, как правило, уменьшается при больших концентрациях из-за реабсорбции и при концентрациях порядка нескольких десятков процентов оказывается недостаточной для определения основных компонентов без разбавления проб.