
- •2. Алфавит Maple-языка и его синтаксис. Основные объекты (определение, ввод, действия с ними). Числа. Обыкновенные дроби.
- •3. Основные объекты (определение, ввод, действия с ними). Радикалы. Константы. Переменные, неизвестные и выражения.
- •4. Последовательности, списки, множества. Массивы. Вектора.
- •Создание массивов, векторов и матриц
- •5. Аналитические преобразования. Операции с формулами. Преобразование типов. Операции оценивания.
- •Оценивание выражений
- •6. Работа с последовательностями, списками, множествами. Последовательности с заданным числом членов
- •Основные функции для произведения членов последовательностей
- •7. Работа с массивами, таблицами. Создание Maple-таблиц и их применение
- •Создание массивов, векторов и матриц
- •8. Внутренняя структура объектов Maple. Подстановка и преобразование типов. Преобразования чисел с разным основанием
- •Контроль за типами объектов
- •9. Операции с полиномами. Определение полиномов
- •Выделение коэффициентов полиномов
- •Оценка коэффициентов полинома по степеням
- •Оценка степеней полинома
- •Контроль полинома на наличие несокращаемых множителей
- •Разложение полинома по степеням
- •Вычисление корней полинома
- •Основные операции с полиномами
- •Операции над степенными многочленами с отрицательными степенями
- •10. Решение уравнений и неравенств.
- •11. Математический анализ. Пределы, суммы. Ряды. Пределы
- •Суммы и ряды
- •12. Математический анализ. Исследование функций. Разложение и приближение функций.
- •13. Математический анализ. Дифференцирование функций. Интегрирование. Производные
- •Интегралы
- •14. Обзор пакетов Maple 15. Пакет linalg. Элементарные операции с матрицами и векторами. Состав пакета linalg
- •15. Пакет LinearAlgebra. Элементарные операции с матрицами и векторами. Назначение и загрузка пакета LinearAlgebra
- •Примеры матричных операций с применением пакета LinearAlgebra
- •Методы решения систем линейных уравнений средствами пакета LinearAlgebra
- •16. Решение систем линейных уравнений. Пакет student. Функции пакета student
- •Функции интегрирования пакета student
- •Иллюстративная графика пакета student
- •17. Основы программирования в maple 15. Задание функций пользователя. Задание функции пользователя
- •10.1.2. Конструктор функций unapply
- •Визуализация функции пользователя
- •18. Основы программирования в maple 15.Условные выражения. Циклы. Операторы пропуска и прерывания. Условные выражения
- •Циклы for и while
- •10.2.5. Операторы пропуска и прерывания циклов
- •19. Процедуры функции. Процедуры. Средства отладки процедур, их сохранение и использование (подключение).
- •Графические процедуры
- •Просмотр кодов процедур
- •Оператор возврата значения return
- •Статус переменных в процедурах и циклах
- •Объявления переменных локальными с помощью оператора local
- •Объявления переменных глобальными с помощью слова global
- •Ключи в процедурах
- •Общая форма задания процедуры
- •20. Решение алгебраических уравнений и систем уравнений. Основная функция solve. Решение систем линейных уравнений
- •21. Одиночные нелинейные и тригонометрические уравнения. Решение одиночных нелинейных уравнений
- •Решение тригонометрических уравнений
- •22. Системы нелинейных и трансцендентных уравнений. Решение уравнений в численном виде. Решение систем нелинейных и трансцендентных уравнений
- •Решение в численном виде — функция fsolve
- •23. Решение функциональных, рекуррентных и др. Уравнений. Функция RootOf. Функция RootOf
- •Решение функциональных уравнений
- •Решение рекуррентных уравнений — rsolve
- •24. Решение обыкновенных дифференциальных уравнений и уравнений в частных производных Примеры аналитического решение оду первого порядка
- •Функция pdsolve
- •25. Двумерная графика в системе maple 15. Команда plot(). Функция plot для построения двумерных графиков
- •26. Двумерные команды пакета plots. Двумерные графические структуры Maple.
- •27. Двумерные команды пакета plottols. Анимация двумерных графиков.
- •28. Пространственная графика в Maple. Команда plot3d().
- •Параметры функции plot3d
- •29. Трёхмерные команды пакета plots. Трёхмерные графические структуры Maple.
- •30. Меню для работы с трёхмерной графикой. Трёхмерные команды пакета plottools.
- •31. Символьные преобразования выражений. Команда simplify, expand. Упрощение выражений — simplify
- •Расширение выражений — expand
- •32. Символьные преобразования выражений. Команда factor, collect. Разложение выражений (факторизация) — factor
- •Комплектование по степеням — collect
- •33. Решение тригонометрических уравнений.
- •34. Решение систем линейных уравнений. Решение систем линейных уравнений
- •35. Решение систем нелинейных и трансцендентных уравнений.
- •36. Поиск эсктремумов функции командой solve.
- •37. Поиск эсктремумов функции командой extrema.
- •38. Поиск минимумов и максимумов аналитической функции командами minimize, maximize.
- •39. Работа с функцией из отдельных кусков. Функция piecewise. Работа с функциями piecewise
- •40. Численное решение дифференциальных уравнений. Команда dsolve.
- •II. Вопросы по практике
4. Последовательности, списки, множества. Массивы. Вектора.
В системе Maple любые выражения могут включаться в наборы, относящиеся кмножественным данным. Такие наборы в виде множеств создаются с помощью фигурных скобок { }:
> {a,b,a,a,b,d,e,c,d};
{a, b, с, е, d}
> {10,2+3,4+4,8,5,1};
{1, 5, 8, 10}
> {`Hello` ,`my`,`friend`};
{friend, Hello, my}
Отличительная черта множеств — автоматическое устранение из них повторяющихся по значению элементов. Кроме того, Maple расставляет элементы множеств в определенном порядке — числа в порядке увеличения значения, а символы и строки в алфавитном порядке. Для множеств нет строгого математического определения, и мы будем считать их наборами, удовлетворяющими перечисленным выше признакам.
Для создания упорядоченных наборов — списков — служат квадратные скобки []:
> [10,2+3,4+4,8,5,1];
[10, 5, 8, 8, 5, 1]
> [а, b, c, a, a, d, d, e] ;
[a, b, с, a, a, d, d, e]
Как нетрудно заметить, элементы списков преобразуются и выводятся строго в том порядке, в каком они были заданы. Списки широко применяются для задания векторов и матриц.
В ряде случаев, например, при подготовке данных для двумерных графиков, возникает необходимость в подготовке парных списков — скажем, координат точек (х, у) графика. Для этого можно использовать функцию zip(f, u, v) или zip(f, u, v, d). Здесь f — бинарная функция, u, v — списки или векторы, d — необязательное значение.
Примеры применения функции zip даны на рис. 2.5. Там же показано применение этих средств для построения точек, представляющих множество действительных чисел на плоскости. Для этого использована функция pointplot из пакета plots.
Рис. 2.5. Представление множества чисел на плоскости
Создание массивов, векторов и матриц
Важным типом данных являются списки или листы. В Maple 9.5 они создаются с помощью квадратных скобок, например:
[1,2,3,4] — список из четырех целых чисел;
[1,2.34,5] — список из двух вещественных и одного целого числа;
[a,b, "Привет"] — список из двух символов (переменных) и строковой константы;
[sin(x), 2*cos(x),a^2-b] — список из трех математических выражений.
Для создания векторов (одномерных массивов) и матриц (двумерных массивов) служит функция array. Обычно она используется в следующих формах:
array[a..b,s1] — возвращает вектор с индексами от а до b и значениями в одномерном списке s1;
array[a..b,c..d,s2] — возвращает матрицу с номерами строк от а до b, номерами столбцов от с до d и значениями в двумерном списке s2.
Примеры задания вектора и матрицы представлены ниже:
array(1..3,[х,у,х+у]) — создает вектор с элементами x, у и х+y;
array(1..2,1..2,[[a,b],[c,d]])
— квадратная матрица
Для создания векторов может использоваться также конструктор векторов Vector[o](d, init, ro, sh, st, dt, f, а, о) с рядом опционально заданных параметров. В этой книге эта конструкция практически не используется. Векторы и матрицы можно также задавать с помощью угловых скобок:
> V:=<a,b,с>;
> Vector[row]([a,b,с]);
[a, b, c]
> Vector[row](<a, b, c>);
[a, b, c]
> M:=<<a,b,c>|<d,e,f>>;
Имеется множество функций для работы со списками, массивами и матрицами. Они будут рассмотрены в дальнейшем. В принципе, размерность массивов, создаваемых списками, не ограничена, и массивы могут быть многомерными.