
Prime Numbers
.pdfREFERENCES |
573 |
[Vaughan 1977] R. Vaughan. Sommes trigonom´etriques sur les nombres premiers.
C. R. Acad. Sci. Paris S´er. A-B, 285:A981–A983, 1977.
[Vaughan 1989] R. Vaughan, A new iterative method in Waring’s problem, Acta Arith., 162:1–71, 1989.
[Vaughan 1997] R. Vaughan. The Hardy–Littlewood Method. Second edition, volume 125 of Cambridge Tracts in Mathematics. Cambridge University Press, 1997.
[Veach 1997] E. Veach. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford University, 1997.
[Vehka 1979] T. Vehka. Explicit construction of an admissible set for the conjecture that sometimes π(x + y) > π(x) + π(y). Notices Amer. Math. Soc., 26, A-453, 1979.
[Vinogradov 1985] I. Vinogradov. Ivan Matveeviˇc Vinogradov: Selected Works. Springer–Verlag, 1985. L. Faddeev, R. Gamkrelidze, A. Karacuba, K. Mardzhanishvili, and E. Miˇsˇcenko, editors.
[Vladimirov et al. 1994] V. Vladimirov, I. Volovich, and E. Zelenov. p-adic Analysis and Mathematical Physics, volume 1 of Series on Soviet and East European Mathematics. World Scientific, 1994.
[von zur Gathen and Gerhard 1999] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 1999.
[Wagsta 1978] S. Wagsta , Jr. The irregular primes to 125000. Math. Comp., 32:583–591, 1978.
[Wagsta 1993] S. Wagsta , Jr. Computing Euclid’s primes. Bull. Inst. Combin. Appl., 8:23–32, 1993.
[Wagsta 2004] S. Wagsta , Jr. The Cunningham project. http://www.cerias.purdue.edu/homes/ssw/cun/index.html.
[Ware 1998] A. Ware. Fast Approximate Fourier Transforms for Irregularly Spaced Data. SIAM Rev., 40:838–856, 1998.
[Warren 1995] B. Warren. An interesting group of combination-product sets produces some very nice dissonances. The Journal of the Just Intonation Network, 9(1):1, 4–9, 1995.
[Watkins 2004] M. Watkins. Class numbers of imaginary quadratic fields. Math. Comp. 73:907–938, 2004.
[Watt 1989] N. Watt. Exponential sums and the Riemann zeta-function. II. J. London Math. Soc., 39, 1989.
[Weber 1995] K. Weber. The accelerated GCD algorithm. ACM Trans. Math. Soft., 21:111–122, 1995.
[Weber et al. 2005] K. Weber, V. Trevisan, and L. Martins. A modular integer GCD algorithm. Journal of Algorithms, 54:152–167, 2005.
[Wedeniwski 2004] S. Wedeniwski. Zetagrid, 2004. http://www.zetagrid.net.
[Weiss 1963] E. Weiss. Algebraic Number Theory. McGraw-Hill, 1963.
574 |
REFERENCES |
[Weisstein 2005] E. Weisstein. Mathworld, 2005.
http://www.mathworld.wolfram.com.
[Wellin 1998] P. Wellin, 1998. Private communication.
¨
[Weyl 1916] H. Weyl. Uber die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 1916.
[Wiedemann 1986] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inform. Theory, 32:54–62, 1986.
[Wieferich 1909] A. Wieferich. Zum letzten Fermat’schen Theorem. J. Reine Angew. Math., 136:293–302, 1909.
[Wiener 1990] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Trans. Inform. Theory, 36:553–558, 1990.
[Williams 1998] H. Williams. Edouard Lucas and Primality Testing, volume 22 of
Canadian Mathematics Society Series of Monographs and Advanced Texts. John Wiley and Sons, 1998.
[Williams and Clearwater 1998] C. Williams and S. Clearwater. Explorations in Quantum Computing. TELOS/Springer–Verlag, 1998.
[Williams and Shallit 1993] H. Williams and J. Shallit. Factoring integers before computers. In W. Gautschi, editor, Mathematics of Computation 1943–1993, volume 48 of Proc. Sympos. Appl. Math., pages 481–531. Amer. Math. Soc., 1994.
[Winterhof 1998] A. Winterhof, On Waring’s problem in finite fields, Acta Arith., 87:171–177, 1998.
[Wolf 1997] M. Wolf. 1/f noise in the distribution of prime numbers. Physica A, 241:493–499, 1997.
[Woltman 2000] G. Woltman. Great Internet Mersenne prime search (GIMPS), 2000. http://www.mersenne.org.
[Wozniakowski 1991] H. Wozniakowski. Average case complexity of multivariate integration. Bull. Amer. Math. Soc. (N.S.), 24:185–194, 1991.
[Wu 1997] P. Wu. Multiplicative, congruential random-number generators. ACM Trans. Math. Soft., 23:255–265, 1997.
[Yacobi 1999] Y. Yacobi. Fast exponentiation using data compression. SIAM J. Comput., 28:700–703, 1999.
[Yagle 1995] A. Yagle. Fast algorithms for matrix multiplication using pseudo-number-theoretic transforms. IEEE Trans. Sig. Proc, 43:71–76, 1995.
[Yan et al. 1991] J. Yan, A. Yan, and B. Yan. Prime numbers and the amino acid code: analogy in coding properties. J. Theor. Biol., 151(3):333–341, 1991.
[Yoshimura 1997] J. Yoshimura. The evolutionary origins of periodical cicadas during ice ages. American Naturalist, 149(1):112–124, 1997.
[Yu 1996] G. Yu. The di erences between consecutive primes. Bull. London Math. Soc., 28:242–248, 1996.
REFERENCES |
575 |
[Zhang 1998] M. Zhang. Factorization of the numbers of the form m3 + c2m2 + c1m + c0. In [Buhler 1998], pages 131–136.
[Zhang and Tang 2003] Z. Zhang and M. Tang. Finding strong pseudoprimes to several bases. II. Math. Comp., 72: 2085–2097, 2003.
[Zhang 2002] Z. Zhang. A one-parameter quadratic-base version of the Baillie–PSW probable prime test. Math. Comp., 71: 1699–1734, 2002.
[Zimmermann 2000] P. Zimmermann. The ECMNET project, 2000. http://www.loria.fr/˜zimmerma/records/ecmnet.html.
[Zimmermann 2004] P. Zimmermann. Private communication.
[Zinoviev 1997] D. Zinoviev. On Vinogradov’s constant in Goldbach’s ternary problem. J. Number Theory, 65:334–358, 1997.