
Prime Numbers
.pdfREFERENCES |
563 |
volume 46 of Proc. Sympos. Appl. Math., pages 73–90. American Math. Soc., 1991.
[Matijaseviˇc 1971] Y. Matijaseviˇc. Diophantine representations of the set of prime numbers. Dokl. Akad. Nauk SSSR, 12:354–358, 1971.
[Mauldin 1999] R. Mauldin. The Beal conjecture and prize, 1999. http://www.math.unt.edu/˜mauldin/beal.html.
[McClellan and Rader 1979] J. McClellan and C. Rader. Number Theory in Digital Signal Processing. Prentice-Hall, 1979.
[McKee 1996] J. McKee. Turning Euler’s factoring method into a factoring algorithm. Bull. London Math. Soc., 28:351–355, 1996.
[McKee 1999] J. McKee. Speeding Fermat’s factoring method. Math. Comp., 68:1729–1737, 1999.
[Menezes et al. 1993] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to a finite field. IEEE Trans. Inform. Theory, 39:1639–1646, 1993.
[Menezes et al. 1997] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.
[Mignotte 2001] M. Mignotte. Catalan’s equation just before 2000. In M. Jutila and T. Mets¨ankyl¨a, editors, Number Theory (Turku, 1999). de Gruyter, 247–254.
[Mih˘ailescu and Avanzi 2003] P. Mih˘ailescu and R. Avanzi. E cient ‘quasi-deterministic’ primality test improving AKS. http://www-math.uni-paderborn.de/˜preda/.
[Mih˘ailescu 2004] P. Mih˘ailescu. Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572:167–195, 2004.
[Miller 1976] G. Miller. Riemann’s hypothesis and tests for primality. J. Comput. System Sci., 13:300–317, 1976.
[Miller 1987] V. Miller. Use of elliptic curves in cryptography. In H. Williams, editor, Advances in Cryptology, Proc. Crypto ’85, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer–Verlag, 1987.
[Mills 1947] W. Mills. A prime-representing function. Bull. Amer. Math. Soc., 53:604, 1947.
[Moenck 1973] R. Moenck. Fast computation of GCDs. In Proc. 5th Annual ACM Symposium on the Theory of Computing, pages 142–151, 1973.
[Monier 1980] L. Monier. Evaluation and comparison of two e cient probabilistic primality testing algorithms. Theoret. Comput. Sci., 12:97–108, 1980.
[Montgomery and Vaughan 1973] H. Montgomery and R. Vaughan. The large sieve. Mathematika 20:119–134, 1973.
[Montgomery 1985] P. Montgomery. Modular multiplication without trial division. Math. Comp., 44:519–521, 1985.
564 |
REFERENCES |
[Montgomery 1987] P. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math. Comp., 48:243–264, 1987.
[Montgomery 1992a] P. Montgomery. An FFT Extension of the Elliptic Curve Method of Factorization. PhD thesis, University of California, Los Angeles, 1992.
[Montgomery 1992b] P. Montgomery. Evaluating recurrences of form
Xm+n = f (Xm, Xn, Xm−n) via Lucas chains. Unpublished manuscript, 1992.
[Montgomery 1994] P. Montgomery. Square roots of products of algebraic numbers. In W. Gautschi, editor, Mathematics of Computation 1943–1993, volume 48 of Proc. Sympos. Appl. Math., pages 567–571. Amer. Math. Soc., 1994.
[Montgomery 1995] P. Montgomery. A block Lanczos algorithm for finding dependencies over GF (2). In Advances in Cryptology, Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science, pages 106–120, 1995.
[Montgomery and Silverman 1990] P. Montgomery and R. Silverman. An FFT extension to the P − 1 factoring algorithm. Math. Comp., 54:839–854, 1990.
[Morain 1990] F. Morain. Courbes elliptiques et tests de primalit´e. PhD thesis, Universit´ Claude Bernard-Lyon I, 1990.
[Morain 1992] F. Morain. Building cyclic elliptic curves modulo large primes. Unpublished manuscript, 1992.
[Morain 1995] F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques. J. Th´eor. Nombres Bordeaux, 7:255–282, 1995. Les Dix-huit`emes Journ´ees Arithm´etiques (Bordeaux, 1993).
[Morain 1998] F. Morain. Primality proving using elliptic curves: an update. In [Buhler 1998], pages 111 –127.
[Morain 2004] F. Morain. Implementing the asymptotically fast version of the elliptic curve primality proving algorithm. http://www.lix.polytechnique.fr/Labo/Francois.Morain.
[Morrison and Brillhart 1975] M. Morrison and J. Brillhart. A method of factoring and the factorization of F7. Math. Comp., 29:183–205, 1975. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday.
[M¨uller 1998] V. M¨uller. E cient algorithms for multiplication on elliptic curves. Proceedings of GI—Arbeitskonferenz Chipkarten, TU M¨unchen, 1998.
[M¨uller 2004] V. M¨uller. Publications Volker M¨uller, 2004.
http://lecturer.ukdw.ac.id/vmueller/publications.php, 2004.
[Murphy 1998] B. Murphy. Modelling the yield of number field sieve polynomials. In [Buhler 1998], pages 137–150.
[Murphy 1999] B. Murphy. Polynomial selection for the number field sieve integer factorisation algorithm. PhD thesis, Australian National University, 1999.
REFERENCES |
565 |
[Namba 1984] M. Namba. Geometry of Projective Algebraic Curves, volume 88 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, 1984.
[Narkiewicz 1986] W. Narkiewicz. Classical Problems in Number Theory. PWN-Polish Scientific Publishers, 1986.
[Nathanson 1996] M. Nathanson. Additive Number Theory: The Classical Bases, volume 164 of Graduate Texts in Mathematics. Springer–Verlag, 1996.
[Nguyen 1998] P. Nguyen. A Montgomery-like square root for the number field sieve. In [Buhler 1998], pages 151–168.
[Nguyen and Liu 1999] N. Nguyen and Q. Liu. The Regular Fourier Matrices and Nonuniform Fast Fourier Transforms. SIAM J. Sci. Comput., 21:283–293, 1999.
[Nicely 2004] T. Nicely. Prime constellations research project, 2004. http://www.trnicely.net/counts.html.
[Niederreiter 1992] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods, volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1992.
[Niven et al. 1991] I. Niven, H. Zuckerman, and H. Montgomery. An Introduction to the Theory of Numbers. Fifth edition. John Wiley and Sons, 1991.
[Nussbaumer 1981] H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer–Verlag, 1981.
[Odlyzko 1985] A. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In Advances in Cryptology, Proc. Eurocrypt ’84, volume 209 of Lecture Notes in Computer Science, pages 224–313. Springer–Verlag, 1985.
[Odlyzko 1987] A. Odlyzko. On the distribution of spacings between zeros of the zeta function. Math. Comp., 48:273–308, 1987.
[Odlyzko 1992] A. Odlyzko. The 1020-th zero of the Riemann zeta function and 175 million of its neighbors, 1992. http://www.research.att.com/˜amo.
[Odlyzko 1994] A. Odlyzko. Analytic computations in number theory. In
W. Gautschi, editor, Mathematics of Computation 1943–1993, volume 48 of Proc. Sympos. Appl. Math., pages 441–463. Amer. Math. Soc., 1994.
[Odlyzko 2000] A. Odlyzko. Discrete logarithms: The past and the future.
Designs, Codes, and Cryptography, 19:129–145, 2000.
[Odlyzko 2005] A. Odlyzko. The zeros of the Riemann zeta function: the 1022-nd zero and 10 billion of its neighbors. In preparation.
[Odlyzko and te Riele 1985] A. Odlyzko and H. te Riele. Disproof of the Mertens conjecture. J. Reine Angew. Math., 357:138–160, 1985.
[Odlyzko and Sch¨onhage 1988] A. Odlyzko and A. Sch¨onhage. Fast algorithms for multiple evaluations of the Riemann zeta-function. Trans. Amer. Math. Soc., 309:797–809, 1988.
566 |
REFERENCES |
[Oesterl´ 1985] J. Oesterl´. Nombres de classes des corps quadratiques imaginaires. In Seminar Bourbaki (1983/84), Ast´erisque No. 121-122, pages 309–323, 1985.
[Ohi 2003] H. Oki, 2003. Private communication.
[Okeya and Sakurai 2001] K. Okeya and K. Sakurai. E cient Elliptic Curve Cryptosystems from a Scalar Multiplication Algorithm with Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve. In C. K. Koc, D. Naccache, C. Paar (Eds.). Third International Workshop on Cryptographic Hardware and Embedded Systems—CHES 2001. LNCS 2162:126, Springer–Verlag, Paris, France, May 14-16, 2001.
[Owen 1995] A. Owen. Randomly permuted (t, m, s)-nets and (t, m, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 299–317. Springer–Verlag, 1995.
[Owen 1997a] A. Owen. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal., 34:1884–1910, 1997.
[Owen 1997b] A. Owen. Scrambled net variance for integrals of smooth functions. Ann. Statist., 25:1541–1562, 1997.
[Padma and Venkataraman 1996] R. Padma and S. Venkataraman. Elliptic curves with complex multiplication and a character sum. J. Number Theory, 61:274–282, 1996.
[Papadopoulos 1999] J. Papadopoulos, 1999. Private communication.
[Papageorgiu and Traub 1997] A. Papageorgiu and J. Traub. Faster evaluation of multidimensional integrals, 1997. http://arxiv.org/find/physics/1/au:+Traub/0/1/0/2000/0/1.
[Parberry 1970] E. Parberry. On primes and pseudo-primes related to the Fibonacci sequence. Fibonacci Quart., 8:49–60, 1970.
[Park and Miller 1988] S. Park and K. Miller. Random number generators: good ones are hard to find. Comm. ACM, 31:1192–1201, 1988.
[Paskov and Traub 1995] S. Paskov and J. Traub. Faster valuation of financial derivatives. J. Portfolio Management, 22:113–120, 1995.
[Patel and Sundaram 1998] S. Patel and G. Sundaram. An e cient discrete log pseudo random generator. In H. Krawczyk, editor, Advances in Cryptology, Proc. Crypto ’98, volume 1462 of Lecture Notes in Computer Science, pages 304–317. Springer–Verlag, 1998.
[Paulos 1995] J. Paulos. High 5 jive. Forbes, 156:102, October 1995.
[Paun et al. 1998] G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing Paradigms. Springer–Verlag, 1998.
[Peralta 1993] R. Peralta. A quadratic sieve on the n-dimensional hypercube. In
Advances in Cryptology, Proc. Crypto ’92, volume 740 of Lecture Notes in Computer Science. Springer–Verlag, 1993.
REFERENCES |
567 |
[Peralta and Okamoto 1996] R. Peralta and E. Okamoto. Faster factoring of integers of a special form. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E79-A:489–493, 1996.
[Percival 2003] C. Percival. Rapid multiplication modulo the sum and di erence of highly composite numbers. Math. Comp. 72:387–395, 2003.
[Peterson 2000] I. Peterson. Great computations. Science News, 157(10):152–153, March 4, 2000.
[Pinch 1993] R. Pinch. The Carmichael numbers up to 1015. Math. Comp., 61:381–391, 1993.
[Pollard 1974] J. Pollard. Theorems on factorization and primality testing. Proc. Cambridge Philos. Soc., 76:521–528, 1974.
[Pollard 1975] J. Pollard. A Monte Carlo method for factorization. Nordisk Tidskr. Informationsbehandling (BIT), 15:331–334, 1975.
[Pollard 1978] J. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp., 32:918–924, 1978.
[Pollard 2000] J. Pollard. Kangaroos, Monopoly and discrete logarithms. J. Cryptology, 13:437–447, 2000.
[Pomerance 1981] C. Pomerance. On the distribution of pseudoprimes. Math. Comp., 37:587–593, 1981.
[Pomerance 1982] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In H. Lenstra, Jr. and R. Tijdeman, editors,
Computational methods in number theory, Part I, volume 154 of Math. Centre Tracts, pages 89–139. Math. Centrum, 1982.
[Pomerance 1985] C. Pomerance. The quadratic sieve factoring algorithm. In
Advances in cryptology, Proc. Eurocrypt ’84, volume 209 of Lecture Notes in Computer Science, pages 169–182. Springer–Verlag, 1985.
[Pomerance 1986] C. Pomerance. On primitive divisors of Mersenne numbers. Acta Arith., 46:355–367, 1986.
[Pomerance 1987a] C. Pomerance. Very short primality proofs. Math. Comp., 48:315–322, 1987.
[Pomerance 1987b] C. Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In Discrete Algorithms and Complexity, pages 119–143. Academic Press, 1987.
[Pomerance 1996a] C. Pomerance. Multiplicative independence for random integers. In Analytic Number Theory, Vol. 2 (Allerton Park, IL, 1995), volume 139 of Progr. Math., pages 703–711. Birkh¨auser, 1996.
[Pomerance 1996b] C. Pomerance. A tale of two sieves. Notices Amer. Math. Soc., 43:1473–1485, 1996.
[Pomerance and Smith 1992] C. Pomerance and J. Smith. Reduction of huge, sparse matrices over finite fields via created catastrophes. Experiment. Math., 1:89–94, 1992.

568 |
REFERENCES |
[Pomerance et al. 1988] C. Pomerance, J. Smith, and R. Tuler. A pipeline architecture for factoring large integers with the quadratic sieve algorithm. SIAM J. Comput., 17:387–403, 1988. Special issue on cryptography.
[Prachar 1978] K. Prachar. Primzahlverteilung, volume 91 of Grundlehren der Mathematischen Wissenschaften. Springer–Verlag, 1978. Reprint of the 1957 edition.
[Pratt 1975] V. Pratt. Every prime has a succinct certificate. SIAM J. Comput., 4:214–220, 1975.
[Preskill 1999] J. Preskill. Course notes, Phys 229, Calif. Inst. of Tech., 1999. www.theory.caltech.edu/people/preskill/ph229/.
[Press et al. 1996] W. Press, S. Teukolsky, W. Vettering, and B. Flannery. Numerical Recipes in C. Cambridge University Press, 1996.
[Pritchard 1981] P. Pritchard. A sublinear additive sieve for finding prime numbers. Comm. ACM, 24:18–23, 1981.
[Pritchard et al. 1995] P. Pritchard, A. Moran, and A. Thyssen. Twenty-two primes in arithmetic progression. Math. Comp., 64:1337–1339, 1995.
[Purdom and Williams 1968] P. Purdom and J. Williams. Cycle length in a random function. Trans. Amer. Math. Soc. 133:547–551, 1968.
[Pustyl’nkov 1999] L. Pustyl’nikov. On a property of the classical zeta-function associated with the Riemann conjecture on zeros. Russian Math. Surveys, 54:162–163, 1999.
[Rabin 1976] M. Rabin. Probabilistic algorithms. In Algorithms and Complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, PA, 1976), pages 21–39. Academic Press, 1976.
[Rabin 1980] M. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12:128–138, 1980.
ˇ
[Ramar´e 1995] O. Ramar´e. On Snirel’man’s constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:645–706, 1995.
[Ramar´e and Rumely 1996] O. Ramar´e and R. Rumely. Primes in arithmetic progressions. Math. Comp., 65:397–425, 1996.
[Ribenboim 1994] P. Ribenboim. Catalan’s Conjecture: Are 8 and 9 the Only Consecutive Powers? Academic Press, 1994.
[Ribenboim 1996] P. Ribenboim. The New Book of Prime Number Records. Springer–Verlag, 1996.
[Richstein 2001] J. Richstein. Verifying the Goldbach conjecture up to 4 · 1014. Math. Comp., 70:1745–1749, 2001.
[Riesel and G¨ohl 1970] H. Riesel and G. G¨ohl. Some calculations related to Riemann’s prime number formula. Math. Comp., 24:969–983, 1970.
[Rishi et al. 1984] D. Rishi, J. Parnami, and A. Rajwade. Evaluation of a cubic
√
character sum using the −19 division points of the curve
Y 2 = X3 − 23 · 19X + 2 · 192. J. Number Theory, 19:184–194, 1984.
REFERENCES |
569 |
[Rivest et al. 1978] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21:120–126, 1978.
[Rose 1988] H. Rose. A Course in Number Theory. Clarendon Press, Oxford, 1988.
[Rosser 1939] J. Rosser. The n-th prime is greater than n log n. Proc. London Math. Soc., 45:21–44, 1939.
[Rosser and Schoenfeld 1962] J. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J. Math., 6:64–94, 1962.
[Rotkiewicz 1973] A. Rotkiewicz. On the pseudoprimes with respect to the Lucas sequences. Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 21:793–797, 1973.
[Rumely 1993] R. Rumely. Numerical computations concerning the ERH. Math. Comp., 61:415–440, S17–S23, 1993.
[Ruzsa 1999] I. Ruzsa. Erd˝os and the integers. J. Number Theory, 79:115–163, 1999.
[Saouter 1998] Y. Saouter. Checking the odd Goldbach conjecture up to 1020. Math. Comp., 67:863–866, 1998.
[Satoh and Araki 1998] T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves.
Comment. Math. Univ. St. Paul., 47:81–92, 1998. Errata, ibid. 48:1999, 211-213.
[Schinzel and Sierpi´nski 1958] A. Schinzel and W. Sierpi´nski. Sur certaines hypoth`eses concernant les nombres premiers. Acta Arith., 4:185–208, 1958. Erratum, ibid. 5:259, 1958.
[Schirokauer et al. 1996] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: the e ectiveness of the index calculus method. In Algorithmic Number Theory: Proc. ANTS II, Talence, France, volume 1122 of Lecture Notes in Computer Science, pages 337–361. Springer–Verlag, 1996.
[Schmidt 1972] W. Schmidt. Irregularities of distribution. VII. Acta Arith., 21:45–50, 1972.
[Schneier 1996] B. Schneier. Applied Cryptography. John Wiley and Sons, 1996.
[Schoenfeld 1976] L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Math. Comp., 30:337–360, 1976. Corrigendum, ibid. 30:900, 1976.
[Sch¨onhage 1971] A. Sch¨onhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139–144, 1971.
[Sch¨onhage 1982] A. Sch¨onhage. Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coe cients. In
Computer Algebra, EUROCAM ’82, Marseille, volume 144 of Lecture Notes in Computer Science, pages 3–15. Springer–Verlag, 1982.
570 |
REFERENCES |
[Sch¨onhage and Strassen 1971] A. Sch¨onhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing (Arch. Elektron. Rechnen), 7:281–292, 1971.
[Schoof 1982] R. Schoof. Quadratic fields and factorization. In H. Lenstra, Jr. and R. Tijdeman, editors, Computational methods in number theory, Part I, volume 154 of Math. Centre Tracts, pages 235–286. Math. Centrum, 1982.
[Schoof 1985] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp., 44:483–494, 1985.
[Schoof 1995] R. Schoof. Counting points on elliptic curves over finite fields. J. Th´eor. Nombres Bordeaux, 7:219–254, 1995. Les Dix-huit`emes Journ´ees Arithm´etiques (Bordeaux, 1993).
[Schoof 2004] R. Schoof. Four primality proving algorithms. In J. Buhler and P. Stevenhagen, editors Cornerstones in algorithmic number theory
(tentative title), a Mathematical Sciences Research Institute Publication. Cambridge University Press, to appear.
[Schroeder 1999] M. Schroeder. Number Theory in Science and Communication, volume 7 of Springer Series in Information Sciences. Springer–Verlag, 1999. Corrected printing of the third (1997) edition.
[Scott 1999] M. Scott, 1999. Private communication.
[Selfridge and Hurwitz 1964] J. Selfridge and A. Hurwitz. Fermat numbers and Mersenne numbers. Math. Comp., 18:146–148, 1964.
[Semaev 1998] I. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Math. Comp., 67:353–356, 1998.
[Seroussi et al. 1999] G. Seroussi, N. Smart, and I. Blake. Elliptic Curves in Cryptography, volume 265 of London Math. Soc. Lecture Note Series. Cambridge University Press, 1999.
[Shamir 1999] A. Shamir. Factoring large numbers with the TWINKLE device (extended abstract). In C¸ . Ko¸c and C. Paar, editors, Cryptographic Hardware and Embedded Systems, First International Workshop, CHES ’99, Worcester, MA, volume 1717 of Lecture Notes in Computer Science, pages 2–12. Springer–Verlag, 1999.
[Shanks 1971] D. Shanks. Class number, a theory of factorization, and genera. In
1969 Number Theory Institute, Stony Brook, N.Y., volume 20 of Proc. Sympos. Pure Math., pages 415–440. Amer. Math. Soc., 1971.
[Shanks and Schmid 1966] D. Shanks and L. Schmid. Variations on a theorem of Landau. Part I. Math. Comp., 20:551–569, 1966.
[Shlesinger 1986] M. Shlesinger. On the Riemann hypothesis: a fractal random walk approach. Physica, 138A:310–319, 1986.
[Shor 1994] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symp. Found. Comp. Sci., pages 124–134, 1994.
REFERENCES |
571 |
[Shor 1999] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41:303–332, 1999.
[Shoup 1992] V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369–380, 1992.
[Shoup 1995] V. Shoup. A new polynomial factorization algorithm and its implementation. J. Symbolic Comput., 20:363–397, 1995.
[Silva 2005] T. Silva. Goldbach conjecture verification. http://www.ieeta.pt/ tos/goldbach.html, 2005.
[Silverman 1986] J. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics. Springer–Verlag, 1986.
[Silverman and Wagsta 1993] R. Silverman and S. Wagsta , Jr. A practical analysis of the elliptic curve factoring algorithm. Math. Comp., 61:445–462, 1993.
[Sloan and Wozniakowski 1998] I. Sloan and H. Wozniakowski. When are quasi-Monte Carlo algorithms e cient for high dimensional integrals? Complexity, 14:1–33, 1998.
[Smart 1998] N. Smart. The algorithmic resolution of Diophantine equations, volume 41 of London Mathematical Society Student Texts. Cambridge University Press, 1998.
[Smart 1999] N. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryptology, 12:193–196, 1999.
[Solinas 1998] J. Solinas. Standard specifications for public key cryptography. Annex A: Number-theoretic background. IEEE P1363 Draft(s), 1998–2004. http://grouper.ieee.org/groups/1363/.
[Solinas 1999] J. Solinas. Generalized Mersenne numbers, 1999. http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.ps.
[Sorenson 1994] J. Sorenson. Two fast GCD algorithms. J. Algorithms, 16:110–144, 1994.
[Srinivasan 1995] A. Srinivasan. Compuations of Class Numbers of Quadratic Fields. PhD thesis, U. Georgia, 1995.
[Stehl´ and Zimmermann 2004] D.Stehl´ and P.Zimmermann. A Binary Recursive gcd Algorithm. http://www.loria.fr/ stehle/downloads/antsgcd.pdf, and http://www.loria.fr/˜stehle/BINARY.html.
[Stein 1967] J. Stein. Computational problems associated with Racah algebra. J. Comp. Phys., 1:397–405, 1967.
[Strassen 1977] V. Strassen. Einige Resultate uber¨ Berechnungskomplexit¨at. Jber. Deutsch. Math.-Verein., 78:1–8, 1976/77.
[Stuart 1996] I. Stuart. The magic of seven: signifies creation, the sum of the spiritual three and the material four. British Medical Journal, 313(7072), December 21 1996.
572 |
REFERENCES |
[Sun and Sun 1992] Z.-H. Sun and Z.-W. Sun. Fibonacci numbers and Fermat’s last theorem. Acta Arith., 60:371–388, 1992.
[Swarztrauber 1987] P. Swarztrauber. Multiprocessor FFTs. Parallel Computing,
5:197–210, 1987.
[Tanner and Wagsta 1987] J. Tanner and S. Wagsta , Jr. New congruences for the Bernoulli numbers. Math. Comp., 48:341–350, 1987.
[Tatuzawa 1952] T. Tatuzawa. On a theorem of Siegel. Jap. J. Math., 21:163–178, 1951-1952.
[Teitelbaum 1998] J. Teitelbaum. Euclid’s algorithm and the Lanczos method over finite fields. Math. Comp., 67:1665–1678, 1998.
[Terr 2000] D. Terr. A modification of Shanks’ baby-step giant-step algorithm. Math. Comp., 69:767–773, 2000.
[Teske 1998] E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In [Buhler 1998], pages 541–554.
[Teske 2001] E. Teske. On random walks for Pollard’s rho method. Math. Comp., 70:809–825, 2001.
[Tezuka 1995] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic Publishers, 1995.
[Thomas et al. 1986] J. Thomas, J. Keller, and G. Larsen. The calculation of multiplicative inverses over GF (P ) e ciently where P is a Mersenne prime. IEEE Trans. Comp., C-35:478–482, 1986.
[Titchmarsh 1986] E. Titchmarsh and D. Heath-Brown. The Theory of the
Riemann Zeta-function. Oxford University Press, 1986.
[Trevisan and Carvalho 1993] V. Trevisan and J. Carvalho. The composite character of the twenty-second Fermat number. J. Supercomputing, 9:179–182, 1995.
[van de Lune et al. 1986] J. van de Lune, H. te Riele, and D. Winter. On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp., 46:667–681, 1986.
[van der Corput 1922] J. van der Corput. Verscharfung der Absch¨atzungen beim Teilerproblem. Math. Ann., 87:39–65, 1922.
[van der Pol 1947] B. van der Pol. An electro-mechanical investigation of the Riemann zeta function in the critical strip. Bull. Amer. Math. Soc., 53, 1947.
[Van Loan 1992] C. Van Loan. Computational Frameworks for the Fast Fourier Transform, volume 10 of Frontiers in Applied Mathematics. SIAM, 1992.
[van Oorschot and Wiener 1999] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications. J. Cryptology, 12:1–28, 1999.
[van Zyl and Hutchinson] B. van Zyl and D. Hutchinson. Riemann zeros, prime numbers, and fractal potentials. Nonlinear Sciences Abstracts, 2003. http://arxiv.org/abs/nlin.CD/0304038.