
Prime Numbers
.pdfREFERENCES |
553 |
[Cohen et al. 1998] H. Cohen, A. Miyaji, and T. Ono. E cient elliptic curve exponentiation using mixed coordinates. In Advances in Cryptology, Proc. Asiacrypt ’98, volume 1514 of Lecture Notes in Computer Science, pages 51–65. Springer–Verlag, 1998.
[Contini 1997] S. Contini. Factoring integers with the self-initializing quadratic sieve. Masters thesis, U. Georgia, 1997.
[Cooley and Tukey 1965] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19:297–301, 1965.
[Copeland and Erd˝os 1946] A. Copeland and P. Erd˝os. Note on normal numbers.
Bull. Amer. Math. Soc., 52:857–860, 1946.
[Coppersmith 1993] D. Coppersmith. Modifications to the number field sieve. J. Cryptology, 6:169–180, 1993.
[Coppersmith 1997] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology, 10:233–260, 1997.
[Coppersmith et al. 2004] D. Coppersmith, N. Howgrave-Graham, and S. Nagaraj. Divisors in residue classes, constructively, 2004. eprint.iacr.org/2004/339.ps.
[Couveignes 1993] J.-M. Couveignes. Computing a square root for the number field sieve. In A. Lenstra and H. Lenstra, Jr., editors, The development of the number field sieve, volume 1554 of Lecture Notes in Mathematics, pages 95–102. Springer–Verlag, 1993.
[Couveignes and Morain 1994] J.-M. Couveignes and F. Morain. Schoof’s algorithm and isogeny cycles. In L. Adleman and M.-D. Huang, editors,
Algorithmic Number Theory: Proc. ANTS-I, Ithaca, NY, volume 877 of
Lecture Notes in Computer Science, pages 43–58. Springer–Verlag, 1994.
[Couveignes et al. 1996] J.-M. Couveignes, L. Dewaghe, and F. Morain. Isogeny cycles and the Schoof–Atkin–Elkies algorithm. Unpublished manuscript, 1996.
[Cox 1989] D. Cox. Primes of the Form x2 + ny2. John Wiley and Sons, 1989.
[Craig-Wood 1998] N. Craig-Wood, 1998. Private communication.
[Crandall 1994a] R. Crandall. Method and apparatus for public key exchange in a cryptographic system., 1994. U.S. Patents #5159632 (1992), #5271061 (1993), #5463690 (1994).
[Crandall 1994b] R. Crandall. Projects in Scientific Computation.
TELOS/Springer–Verlag, 1994.
[Crandall 1996a] R. Crandall. Topics in Advanced Scientific Computation. TELOS/Springer–Verlag, 1996.
[Crandall 1996b] R. Crandall. Method and apparatus for Digital Signature Authentication, 1996. U. S. Patent #5581616.
[Crandall 1997a] R. Crandall. The challenge of large numbers. Scientific American, pages 58–62, February 1997.
554 |
REFERENCES |
[Crandall 1997b] R. Crandall. Integer convolution via split-radix fast Galois transform, 1997. http://www.perfsci.com.
[Crandall 1998] R. Crandall. Recycled (simultaneous) evaluations of the Riemann zeta function. Unpublished manuscript, 1998.
[Crandall 1999a] R. Crandall. Applications of space-filling curves. Unpublished manuscript, 1999.
[Crandall 1999b] R. Crandall. Fast algorithms for elliptic curve cryptography. Unpublished manuscript, 1999.
[Crandall 1999c] R Crandall. Alternatives to the Riemann–Siegel formula. Unpublished manuscript, 1999.
[Crandall 1999d] R. Crandall. Parallelization of Pollard-rho factorization, 1999. http://www.perfsci.com.
[Crandall et al. 1997] R. Crandall, K. Dilcher, and C. Pomerance. A search for Wieferich and Wilson primes. Math. Comp., 66:433–449, 1997.
[Crandall et al. 1995] R. Crandall, J. Doenias, C. Norrie, and J. Young. The twenty-second Fermat number is composite. Math. Comp., 64 210:863–868, 1995.
[Crandall and Fagin 1994] R. Crandall and B. Fagin. Discrete weighted transforms and large integer arithmetic. Math. Comp., 62:305–324, 1994.
[Crandall et al. 2003] R. Crandall, E. Mayer, and J. Papadopoulos. The twenty-fourth Fermat number is composite. Math. Comp., 72:1555-1572, 2003.
[Crandall and Garst 2001] R. Crandall, Method and apparatus for fast elliptic encryption with direct embedding, U. S. Patent #6307935, 2001.
[Crandall et al. 2004] R. Crandall, E. Jones, J. Klivington, and D. Kramer. Gigaelement FFTs on Apple G5 clusters. http://www.apple.com/acg.
[Crandall and Papadopoulos 2003] R. Crandall and J. Papadopoulos. On the Implementation of AKS-class Primality Tests. http://www.apple.com/acg.
[Creutzburg and Tasche 1989] R. Creutzburg and M. Tasche. Parameter determination for complex number-theoretic transforms using cyclotomic polynomials. Math. Comp., 52:189–200, 1989.
[Damg˚ard et al. 1993] I. Damg˚ard, P. Landrock, and C. Pomerance. Average case error estimates for the strong probable prime test. Math. Comp., 61:177–194, 1993.
[Darmon and Granville 1995] H. Darmon and A. Granville. On the equations zm = F (x, y) and Axp + Byq = Czr . Bull. London Math. Soc., 27:513–543, 1995.
[Davenport 1980] H. Davenport. Multiplicative Number Theory (second edition). Springer–Verlag, 1980.
[Davis 1973] M. Davis. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly, 80:233–269, 1973.
REFERENCES |
555 |
[De Win et al. 1998] E. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature schemes based on elliptic curves. In
[Buhler 1998], pages 252–266.
[Del´eglise and Rivat 1996] M. Del´eglise and J. Rivat. Computing π(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp., 65:235–245, 1996.
[Del´eglise and Rivat 1998] M. Del´eglise and J. Rivat. Computing ψ(x). Math. Comp., 67:1691–1696, 1998.
[Deshouillers et al. 1998] J.-M. Deshouillers, H. te Riele, and Y. Saouter. New experimental results concerning the Goldbach conjecture. In
[Buhler 1998], pages 204–215.
[Deuring 1941] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenk¨orper. Abh. Math. Sem. Hansischen Univ., 14:197–272, 1941.
[Deutsch 1982] D. Deutsch. Is there a fundamental bound on the rate at which information can be processed? Phys. Rev. Lett., 42:286–288, 1982.
[Deutsch 1985] D. Deutsch. Quantum theory, the Church–Turing principle, and the universal quantum computer. Proc. Roy. Soc. London Ser. A, 400:97–117, 1985.
[Dickson 1904] L. Dickson. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math., 33:155–161, 1904.
[Di e and Hellman 1976] W. Di e and M. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, 22:644–654, 1976.
[Dilcher 1999] K. Dilcher. Nested squares and evaluation of integer products, 1999. http://www.mscs.dal.ca/˜dilcher/Preprints/nested.ps.
[Dimitrov et al. 1995] V. Dimitrov, T. Cooklev, and B. Donevsky. Number theoretic transforms over the golden section quadratic field. IEEE Trans. Sig. Proc., 43:1790–1797, 1995.
[Dimitrov et al. 1998] V. Dimitrov, G. Jullien, and W. Miller. A residue number system implementation of real orthogonal transforms. IEEE Trans. Sig. Proc., 46:563–570, 1998.
[Ding et al. 1996] C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography. World Scientific, 1996.
[Dixon 1981] J. Dixon. Asymptotically fast factorization of integers. Math. Comp., 36:255–260, 1981.
[Dress and Olivier 1999] F. Dress and M. Olivier. Polynˆomes prenant des valeurs premi`eres. Experiment. Math., 8:319–338, 1999.
[Dubner et al. 1998] H. Dubner, T. Forbes, N. Lygeros, M. Mizony, and
P. Zimmermann. Ten consecutive primes in arithmetic progression, 1998. http://listserv.nodak.edu/archives/nmbrthry.html.
[Dubner and Gallot 2002] H. Dubner and Y. Gallot. Distribution of generalized Fermat numbers. Math. Comp. 71:825–832, 2002.
556 |
REFERENCES |
[Dudon 1987] J. Dudon. The golden scale. Pitch, I/2:1–7, 1987.
[Dutt and Rokhlin 1993] A. Dutt and V. Rokhlin. Fast Fourier Transforms for Nonequispaced Data. SIAM J. Sci. Comput. 14:1368–1393, 1993.
[Edwards 1974] H. Edwards. Riemann’s Zeta Function. Academic Press, 1974.
[Ekert and Jozsa 1996] A. Ekert and R Jozsa. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys., 68:733–753, 1996.
[Elkenbracht-Huizing 1997] M. Elkenbracht-Huizing. Factoring integers with the Number Field Sieve. PhD thesis, University of Leiden, 1997.
[Elkies 1991] N. Elkies. Explicit isogenies. Unpublished manuscript, 1991.
[Elkies 1997] N. Elkies. Elliptic and modular curves over finite fields and related computational issues. In J. Teitelbaum, editor, Computational Perspectives on Number Theory (Chicago, IL, 1995), volume 7 of
AMS/IP Stud. Adv. Math., pages 21–76. Atkin Conference, Amer. Math. Soc., 1998.
[Ellison and Ellison 1985] W. Ellison and F. Ellison. Prime Numbers. John Wiley and Sons, 1985.
[Engelsma 2004 1999] T. Engelsma. Website for k-tuple permissible patterns, 2004. http://www.opertech.com/primes/k-tuples.html.
[Erd˝os 1948] P. Erd˝os. On arithmetical properties of Lambert series. J. Indian Math. Soc. (N.S.), 12:63–66, 1948.
[Erd˝os 1950] P. Erd˝os. On almost primes. Amer. Math. Monthly, 57:404–407, 1950.
[Erd˝os and Pomerance 1986] P. Erd˝os and C. Pomerance. On the number of false witnesses for a composite number. Math. Comp., 46:259–279, 1986.
[Erd˝os et al. 1988] P. Erd˝os, P. Kiss, and A. S´ark¨ozy. A lower bound for the counting function of Lucas pseudoprimes. Math. Comp., 51:315–323, 1988.
[Escott et al. 1998] A. Escott, J. Sager, A. Selkirk, and D. Tsapakidis. Attacking elliptic curve cryptosystems using the parallel Pollard rho method. RSA Cryptobytes, 4(2):15–19, 1998.
[Estermann 1952] T. Estermann. Introduction to Modern Prime Number Theory. Cambridge University Press, 1952.
[Faure 1981] H. Faure. Discr´epances de suites associ´ees `a un syst`eme de num´eration (en dimension un). Bull. Soc, Math. France, 109:143–182, 1981.
[Faure 1982] H. Faure. Discr´epances de suites associ´ees `a un syst`eme de num´eration (en dimension s). Acta Arith., 41:337–351, 1982.
[Fessler and Sutton 2003] J. Fessler and B. Sutton. Nonuniform Fast Fourier Transforms Using Min-Max Interpolation. IEEE Trans. Sig. Proc., 51:560-574, 2003.
[Feynman 1982] R. Feynman. Simulating physics with computers. Intl. J. Theor. Phys., 21(6/7):467–488, 1982.
REFERENCES |
557 |
[Feynman 1985] R. Feynman. Quantum mechanical computers. Optics News, II:11–20, 1985.
[Flajolet and Odlyzko 1990] P. Flajolet and A. Odlyzko. Random mapping statistics. In Advances in cryptology, Eurocrypt ’89, volume 434 of
Lecture Notes in Comput. Sci., pages 329–354, Springer—Verlag, 1990.
[Flajolet and Vardi 1996] P. Flajolet and I. Vardi. Zeta Function Expansions of Classical Constants, 1996. http://pauillac.inria.fr/algo/flajolet/Publications/Landau.ps.
[Forbes 1999] T. Forbes. Prime k-tuplets, 1999.
http://www.ltkz.demon.co.uk/ktuplets.htm.
[Ford 2002] K. Ford. Vinogradov’s integral and bounds for the Riemann zeta function. Proc. London Math. Soc. (3), 85:565–633, 2002.
[Fouvry 1985] E. Fouvry. Th´eor`eme de Brun–Titchmarsh: application au th´eor`eme de Fermat. Invent. Math., 79:383–407, 1985.
[Fraser 1976] D. Fraser. Array permutation by index-digit permutation. J. ACM, 23:298–309, 1976.
[Franke et al. 2004] J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very large numbers with fastECPP. In Algorithmic number theory: Proc. ANTS VI, Burlington, VT, volume 3076 of Lecture Notes in Computer Science, pages 194–207. Springer-Verlag, 2004.
[Friedlander and Iwaniec 1998] J. Friedlander and H. Iwaniec. The polynomial X2 + Y 4 captures its primes. Ann. of Math., 148:945–1040, 1998.
[Friedlander et al. 2001] J. Friedlander, C. Pomerance, and I. Shparlinski. Period of the power generator and small values of Carmichael’s function. Math. Comp. 70:1591–1605, 2001.
[Frind et al. 2004] M. Frind, P. Jobling, and P. Underwood. 23 primes in arithmetic progression. http://primes.plentyoffish.com.
[Furry 1942] W. Furry. Number of primes and probability considerations. Nature, 150:120–121, 1942.
[Gabcke 1979] W. Gabcke. Neue Herleitung und explizite Restabsch¨atzung der Riemann–Siegel Formel. PhD thesis, Georg-August-Universit¨at zu G¨ottingen, 1979.
[Gallot 1999] Y. Gallot, 1999. Private communication.
[Galway 1998] W. Galway, 1998. Private communication.
[Galway 2000] W. Galway. Analytic computation of the prime-counting function. PhD thesis, U. Illinois at Urbana-Champaign, 2000.
[Gardner 1977] M. Gardner. Mathematical games: a new kind of cipher that would take millions of years to break. Scientific American, August 1977.
[Gentleman and Sande 1966] W. Gentleman and G. Sande. Fast Fourier transforms—for fun and profit. In Proc. AFIPS, volume 29, pages 563–578, 1966.
558 |
REFERENCES |
[Goldwasser and Kilian 1986] S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In Proc. 18th Annual ACM Symposium on the Theory of Computing, pages 316–329, 1986.
[Goldwasser and Micali 1982] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping secret all mental information. In Proc. 14th Annual ACM Symposium on the Theory of Computing, pages 365–377, 1982.
[Golomb 1956] S. Golomb. Combinatorial proof of Fermat’s ‘little theorem’. Amer. Math. Monthly, 63, 1956.
[Golomb 1982] S. Golomb. Shift Register Sequences, (revised version). Aegean Park Press, 1982.
[Gong et al. 1999] G. Gong, T. Berson, and D. Stinson. Elliptic curve pseudorandom sequence generators. In Proc. Sixth Annual Workshop on Selected Areas in Cryptography, Kingston, Canada, August 1999.
[Gordon 1993] D. Gordon. Discrete logarithms in GF (p) via the number field sieve. SIAM J. Discrete Math., 16:124–138, 1993.
[Gordon and Pomerance 1991] D. Gordon and C. Pomerance. The distribution of Lucas and elliptic pseudoprimes. Math. Comp., 57:825–838, 1991. Corrigendum ibid. 60:877, 1993.
[Gordon and Rodemich 1998] D. Gordon and G. Rodemich. Dense admissible sets. In [Buhler 1998], pages 216–225.
[Gourdon and Sebah 2004] X. Gourdon and P. Sebah. Numbers, constants and computation, 2004. http://numbers.computation.free.fr/Constants/constants.html.
[Graham and Kolesnik 1991] S. Graham and G. Kolesnik. Van der Corput’s method of exponential sums, volume 126 of Lecture Note Series. Cambridge University Press, 1991.
[Grantham 1998] J. Grantham. A probable prime test with high confidence. J. Number Theory, 72:32–47, 1998.
[Grantham 2001] J. Grantham. Frobenius pseudoprimes. Math. Comp. 70:873–891, 2001.
[Granville 2004a] A. Granville. It is easy to determine if a given number is prime.
Bull. Amer. Math. Soc., 42:3–38, 2005.
[Granville 2004b] A. Granville. Smooth numbers: computational number theory and beyond. In J. Buhler and P. Stevenhagen, editors Cornerstones in algorithmic number theory (tentative title), a Mathematical Sciences Research Institute Publication. Cambridge University Press, to appear.
[Granville and Tucker 2002] A. Granville and T. Tucker. It’s as easy as abc.
Notices Amer. Math. Soc. 49:1224–1231, 2002.
[Green and Tao 2004] B. Green and T. Tao. The primes contain arbitrarily long arithmetic progressions. http://arxiv.org/abs/math.NT/0404188.
REFERENCES |
559 |
[Guy 1976] R. Guy. How to factor a number. In Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), volume 16 of Congressus Numerantium, pages 49–89, 1976.
[Guy 1994] R. Guy. Unsolved Problems in Number Theory. Second edition, volume I of Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics. Springer—Verlag, 1994.
[Hafner and McCurley 1989] J. Hafner and K. McCurley. A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc., 2:837–850, 1989.
[Halberstam and Richert 1974] H. Halberstam and H.-E. Richert. Sieve Methods, volume 4 of London Mathematical Society Monographs. Academic Press, 1974.
[Hardy 1966] G. Hardy. Collected Works of G. H. Hardy, Vol. I. Clarendon Press, Oxford, 1966.
[Hardy and Wright 1979] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Fifth edition. Clarendon Press, Oxford, 1979.
[Harley 2002] R. Harley. Algorithmique avanc´ee sur les courbes elliptiques. PhD thesis, University Paris 7, 2002.
[H˚astad et al. 1999] J. H˚astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Computing, 28:1364–1396, 1999.
[Hensley and Richards 1973] D. Hensley and I. Richards. Primes in intervals. Acta Arith., 25:375–391, 1973/74.
[Hey 1999] T. Hey. Quantum computing. Computing and Control Engineering, 10(3):105–112, 1999.
[Higham 1996] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.
[Hildebrand 1988a] A. Hildebrand. On the constant in the P´olya–Vinogradov inequality. Canad. Math. Bull., 31:347–352, 1988.
[Hildebrand 1988b] A. Hildebrand. Large values of character sums. J. Number Theory, 29:271–296, 1988.
[Honaker 1998] G. Honaker, 1998. Private communication.
[Hooley 1976] C. Hooley. Applications of Sieve Methods to the Theory of Numbers, volume 70 of Cambridge Tracts in Mathematics. Cambridge University Press, 1976.
[Ivi´c 1985] A. Ivi´c. The Riemann Zeta-Function. John Wiley and Sons, 1985.
[Izu et al. 1998] T. Izu, J. Kogure, M. Noro, and K. Yokoyama. E cient implementation of Schoof’s algorithm. In Advances in Cryptology, Proc. Asiacrypt ’98, volume 1514 of Lecture Notes in Computer Science, pages 66–79. Springer—Verlag, 1998.
[Jaeschke 1993] G. Jaeschke. On strong pseudoprimes to several bases. Math. Comp., 61:915–926, 1993.
560 |
REFERENCES |
[Joe 1999] S. Joe. An average L2 discrepancy for number-theoretic rules. SIAM J. Numer. Anal., 36:1949–1961, 1999.
[Johnson et al. 2001] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm (ECDSA). International Journal of Information Security, 1:36–63, 2001.
[Juriˇsi´c and Menezes 1997] A. Juriˇsi´c and A. Menezes. Elliptic curves and cryptography. Dr. Dobb’s Journal, pages 26–36, April 1997.
[Kaczorowski 1984] J. Kaczorowski. On sign changes in the remainder-term of the prime-number formula. I. Acta Arith., 44:365–377, 1984.
[Kaliski 1988] B. Kaliski, Jr. Elliptic Curves and Cryptography: a Pseudorandom Bit Generator and other Tools. PhD thesis, Massachusetts Institute of Technology, 1988.
[Kaliski 1991] B. Kaliski, Jr. One-way permutations on elliptic curves. J. Cryptology, 3:187–199, 1991.
[Keller 1999] W. Keller. Prime factors k.2n + 1 of Fermat numbers Fm and complete factoring status, 1999. http://www.prothsearch.net/fermat.html.
[Knuth 1971] D. Knuth. The analysis of algorithms. In Actes du Congr`es International des Math´ematiciens (Nice 1970), Volume 3, pages 269–274. Gauthier-Villars, 1971.
[Knuth 1981] D. Knuth. Seminumerical Algorithms (Second edition), volume 2 of
The Art of Computer Programming. Addison-Wesley, 1981.
[Knuth and Trabb Pardo 1976] D. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm. Theoret. Comput. Sci., 3:321–348, 1976-77.
[Koblitz 1987] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209, 1987.
[Koblitz 1994] N. Koblitz. A Course in Number Theory and Cryptography. Springer—Verlag, 1994.
[Ko¸c et al. 1996] C¸ . Ko¸c, T. Acar, and B. Kaliski, Jr. Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro, 16:26-33, 1996.
[Ko¸c and Hung 1997] C¸ . Ko¸c and C. Hung. Fast algorithm for modular reduction.
IEEE Proc.: Computers and Digital Techniques, 145(4), 1998.
[Kocis and White 1997] L. Kocis and W. Whiten. Computational investigations of low-discrepancy sequences. ACM Trans. Math. Soft., 23:266–294, 1997.
[Konyagin and Pomerance 1997] S. Konyagin and C. Pomerance. On primes recognizable in deterministic polynomial time. In The Mathematics of Paul Erd˝os, I, volume 13 of Algorithms and Combinatorics, pages 176–198. Springer—Verlag, 1997.
[Korobov 1992] N. Korobov, Exponential Sums and their Applications, Kluwer Academic Publishers, 1992.
REFERENCES |
561 |
[Kuipers and Niederreiter 1974] L. Kuipers and H. Niederreiter. Uniform
Distribution of Sequences. John Wiley and Sons, 1974.
[Kurlberg and Pomerance 2004] P. Kurlberg and C. Pomerance. On the periods of the linear congruential and power generators. Preprint, 2004.
[Lagarias 1990] J. Lagarias. Pseudorandom number generators in cryptography and number theory. In C. Pomerance, editor, Cryptology and computational number theory, volume 42 of Proc. Sympos. Appl. Math., pages 115–143. Amer. Math. Soc., 1990.
[Lagarias 1999] J. Lagarias. On a positivity property of the Riemann ξ-function. Acta Arith., 89:217–234, 1999.
[Lagarias et al. 1985] J. Lagarias, V. Miller, and A. Odlyzko. Computing π(x): the Meissel-Lehmer method. Math. Comp., 44:537–560, 1985.
[Lagarias and Odlyzko 1987] J. Lagarias and A. Odlyzko. Computing π(x): an analytic method. J. Algorithms, 8:173–191, 1987.
[Languasco 2000] A. Languasco. Some refinements of error terms estimates for certain additive problems with primes. J. Number Theory, 81:149–161, 2000.
[Lavenier and Saouter 1998] D. Lavenier and Y. Saouter. Computing Goldbach Partitions Using Pseudo-random Bit Generator Operators on a FPGA Systolic Array. Lecture Notes in Computer Science, Springer–Verlag, 1482:316, 1998.
[L’Ecuyer and Simard 1999] P. L’Ecuyer and R. Simard. Beware of linear congruential generators with multipliers of the form a = ±2q ± 2r . ACM Trans. Math. Soft., 25:367–374, 1999.
[Lehman 1974] R. Lehman. Factoring large integers. Math. Comp., 28:637–646, 1974.
[Lehmer 1964] E. Lehmer. On the infinitude of Fibonacci pseudo-primes. Fibonacci Quart., 2:229–230, 1964.
[Lenstra 1983] A. Lenstra. Factoring polynomials over algebraic number fields. In
Computer algebra (London, 1983), volume 162 of Lecture Notes in Computer Science, pages 245–254. Springer—Verlag, 1983.
[Lenstra and Lenstra 1993] A. Lenstra and H. Lenstra, Jr., editors. The development of the number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer—Verlag, 1993.
[Lenstra et al. 1982] A. Lenstra, H. Lenstra, Jr., and L. Lovasz. Factoring polynomials with rational coe cients. Math. Ann., 261:515–534, 1982.
[Lenstra et al. 1993a] A. Lenstra, H. Lenstra, Jr., M. Manasse, and J. Pollard. The factorization of the ninth Fermat number. Math. Comp., 61:319–349, 1993.
[Lenstra and Manasse 1994] A. Lenstra and M. Manasse. Factoring with two large primes. Math. Comp., 63:785–798, 1994.
562 |
REFERENCES |
[Lenstra 1981] H. Lenstra, Jr. Primality testing algorithms (after Adleman, Rumely and Williams). In Seminar Bourbaki 33 (1980/81), volume 901 of Lecture Notes in Mathematics, exp. 576. Springer—Verlag, 1981.
[Lenstra 1984] H. Lenstra, Jr. Divisors in residue classes. Math. Comp., 42:331–340, 1984.
[Lenstra 1985] H. Lenstra, Jr. Galois theory and primality testing. In Orders and their applications (Oberwolfach, 1984), volume 1142 of Lecture Notes in Mathematics, pages 169–189. Springer–Verlag, 1985.
[Lenstra 1987] H. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math., 2:649–673, 1987.
[Lenstra 1991] H. Lenstra, Jr., 1991. Private communication.
[Lenstra et al. 1993b] H. Lenstra, Jr., J. Pila, and C. Pomerance. A hyperelliptic smoothness test. I. Philos. Trans. Roy. Soc. London Ser. A, 345:397–408, 1993. Special issue compiled and edited by R. Vaughan: Theory and applications of numbers without large prime factors.
[Lenstra and Pomerance 1992] H. Lenstra, Jr. and C. Pomerance. A rigorous time bound for factoring integers. J. Amer. Math. Soc., 5:483–516, 1992.
[Lenstra and Pomerance 2005] H. Lenstra, Jr. and C. Pomerance. Primality testing with Gaussian periods. Preprint, 2005.
[Li 1997] X. Li. The positivity of a sequence of numbers and the Riemann hypothesis. J. Number Theory, 65:325–333, 1997.
[Lindqvist and Peetre 1997] P. Lindqvist and J. Peetre, On the remainder in a series of Mertens, Exposition. Math., 15:467–478, 1997.
[Lim and Lee 1997] C. Lim and P. Lee. A key recovery attack on discrete log-based schemes using a prime order subgroup. In Advances in Cryptology, Proc. Crypto ’97, volume 1294 of Lecture Notes in Computer Science, pages 249–265. Springer–Verlag, 1997.
[Long 1981] D. Long. Random equivalence of factorization and computation of orders, 1981. Princeton U. Dept. Elec. Eng. and Comp. Sci. Technical Report 284.
[Lovorn 1992] R. Lovorn. Rigorous, subexponential algorithms for discrete logarithms over finite fields. PhD thesis, U. Georgia, 1992.
[Lovorn Bender and Pomerance 1998] R. Lovorn Bender and C. Pomerance. Rigorous discrete logarithm computations in finite fields via smooth polynomials. In J. Teitelbaum, editor, Computational Perspectives on Number Theory (Chicago, IL, 1995), volume 7, pages 221–232. Atkin Conference, Amer. Math. Soc., 1998.
[Madisetti and Williams 1997] V. Madisetti and D. Williams, editors. The Digital Signal Processing Handbook. CRC Press, 1997.
[Marcus 1977] D. Marcus. Number Fields. Springer–Verlag, 1977.
[Marsaglia 1991] G. Marsaglia. The mathematics of random number generators. In S. Burr, editor, The Unreasonable E ectiveness of Number Theory,