 
        
        Chast_2_4_l_13-14
.pdf 
138
иметь отличные от нуля решения. Следовательно, электромагнитное поле может существовать даже при отсутствии каких бы то ни было зарядов.
Электромагнитные поля, существующие в пустоте при отсутствии зарядов,
называют электромагнитными волнами. Мы займемся теперь исследованием свойств таких полей.
Отметим, что эти поля должны быть переменными во времени и в пространстве.
Действительно предположим противное, а именно, вначале что поле E не зависит от времени, т.е., что E E x, y,z . Тогда из первого уравнения системы
(2.161) вытекает, что магнитное поле равно нулю во всех точках пространства
( B 0 ), так как всюду равны нулю источники магнитного поля (плотность тока
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| смещения | 0 | E | 0 ). Так как магнитное поле отсутствует во всех | 
 | точках | ||||
| 
 | t | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| пространства, | то равны нулю везде источники электрического поля | B | 0 | ||||||
| 
 | t | . | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
Следовательно, равно нулю во всех точках пространства и электрическое поле
| ( | 
 | 
 | 
 | 0 ). | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| E | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | Предположим теперь, что поле | 
 | 
 | 
 | 
 | не | зависит от | времени, | т.е., что | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | x, y,z . Тогда из второго уравнения системы (2.161) вытекает, | 
 | ||||||||||||||||||
| B | B | что поле | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | |||||
| E 0 , так как отсутствуют источники электрического поля | 
 | . Теперь из | ||||||||||||||||||||||
| 
 | 
 | t | 0 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | что | 
 | 0 , | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| первого уравнения системы (2.161) следует, | B | 
 | так | как | источники | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | E | 
 | |||||||
| магнитного поля равны нулю во всех точках пространства | t | 0 . | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | Если предположить, что поле | 
 | 
 | 
 | не | зависит от | 
 | координат, | т.е. что | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | E | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | t , | 
 | 
 | ||
| E | E | то из второго уравнения системы (2.161) следует, что равны нулю | ||||||
| 
 | 
 | 
 | 
 | 
 | ||||
| источники | электрического поля во всех точках пространства | B | 0 . | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | |
Следовательно, E 0 . Тогда из первого уравнения системы следует, что B 0 ,
 
139
так как источники магнитного поля во всех точках пространства равны нулю
| 
 | 
 | 
 | 
 | |
| E | 0 | |||
| 
 | t | . | ||
| 
 | 
 | 
 | ||
Наконец, если предположить, что B B t , то из первого уравнения
системы уравнений Максвелла (2.161) следует, что отсутствуют источники
магнитного поля. Поэтому B 0 . Отсюда следует, что B 0 , т.е. отсутствуют
t
источники электрического поля. Следовательно, E 0 .
Резюмируя все сказанное, заключаем, что, если выполнено хотя бы одно из четырех условий: E E x, y,z , B B x, y,z , E E t , B B t , то отсюда следует, что электромагнитное поле равно нулю ( E 0 , B 0 ). Другими
словами, ненулевое решение системы (2.161) должно быть переменным в
| пространстве и во времени. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| Применим операцию | 
 | 
 | rot | 
 | к левой и правой частям первого уравнения | |||||||||||||||||||||||||||||||||||||||||||||||
| системы (2.161) и учтем второе: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | rot rot B | 
 | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | с2 | 
 | t2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| Используя формулу | 
 | 
 | векторного | 
 | 
 | 
 | анализа | rot rot | B | 
 | B | grad divB | 
 | и | ||||||||||||||||||||||||||||||||||||||
| третье уравнение системы (2.161), получим: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 0 | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (2.162) | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | c2 | 
 | 
 | t | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| Это однородное волновое уравнение или однородное уравнение | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| Даламбера. В декартовой системе координат: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| B | 
 | B | 
 | 
 | B | 
 | 
 | B | 0 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | x2 | 
 | 
 | y2 | 
 | z2 | 
 | c2 t2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| Если ввести оператор | 
 | Даламбера | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 2 | 
 | 2 | 
 | 1 | 
 | 2 | , | 
 | 
 | то | ||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | x2 | y2 | z2 | c2 | 
 | t2 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| уравнение (2.162) можно записать так: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 0 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (2.163) | 
 | 
 | 
 | |||||||||||
 
140
Аналогично можно получить дифференциальное уравнение для поля
E . Для этого берем оперецию rot от левой и правой частей второго уравнениня системы (2.161), учитываем первое уравнение, применяем формулу (1.30) и
учитываем четвертое уравнение системы (2.161):
| 
 | 
 | 
 | 1 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | E | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| E | 0 | или | E 0 | . | (2.164) | ||||||||
| с2 | t2 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
Следовательно, поле E также удовлетворяет однородному волновому уравнению.
31. Плоские волны
Рассмотрим частный случай электромагнитных волн, в которых поле зависит от одной декартовой координаты, скажем z, и от времени.
Такие волны называют плоскими, так как в любой плоскости,
перпендикулярной оси z, векторы поля E и B одинаковы (но изменяются со временем). Каждая из плоскостей, перпендикулярная оси z, называется волновым фронтом, орт ez называется фронтовой нормалью (рис. 2.78).
Рис. 2.78. К пояснению определения плоской волны, распространяющейся
вдоль оси z
Прежде всего, покажем, что плоская электромагнитная волна является поперечной по отношению к фронтовой нормали ez , т.е. Ez 0 и Bz 0 .
Найдем:
 
141
| 
 | 
 | 
 | ex | ey | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ex | ey | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | By | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| rot B | 
 | 
 | 
 | e | 
 | 
 | e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 0 | 0 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | y | 
 | x | 
 | 
 | 0 | 
 | 0 | 
 | 1 | 
 | e | 
 | 
 | 
 | . | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | z | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | By | 
 | B | 
 | 
 | 
 | z | 
 | ||||||||||||
| 
 | 
 | 
 | Bx | By | 
 | Bz | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | z | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| Аналогичное выражение можно получить для rot E . Далее: | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | By | 
 | 
 | 
 | B | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | div B | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | z | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| Аналогично | div | 
 | 
 | Ez | . Поэтому | четыре | уравнения | 
 | поля | (2.161) | |||||||||||||||||||||||||||
| E | 
 | ||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
запишутся так:
| 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | ||||||
| B | E | 
 | |||||||||||||
| ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | , | ||||||
| 
 | 
 | 
 | c | 2 | 
 | ||||||||||
| 
 | z | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| E | 
 | B | , | ||||||||||||
| ez | z | 
 | 
 | t | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | Bz | 0 , | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | Ez | 0 . | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
Из двух последних уравнений следует, что:
| Bz Bz t , | Ez Ez t , | 
(2.165)
(2.166)
(2.167)
(2.168)
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| т.е. функции Bz и Ez | пространсвенно постоянны. Далее, поскольку | B | и | |||||||
| ez | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| E | лежат в плоскости волнового фронта, то из (2.165) и (2.166) следует, что | |||||||||
| ez | 
 | 
 | 
 | |||||||
| 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| Ez 0 и | Bz 0 . Т.е. составляющие | E | z | и B | z | плоской волны не могут также | 
| t | t | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | ||
| изменяться и во времени. Значит Ez CЕ , | Bz CB . | |||||
Разложим электромагнитное поле на две составляющие:
E E1 CE ez E1 E2 ,
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 142 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| B | B1 CBez B1 B2 . | ||||||||||||||||||||||||
| Здесь поле | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| E1, B1 не содержит z-овых составляющих. | |||||||||||||||||||||||||
| Так как поля | 
 | 
 | 
 | и | 
 | 2 , | 
 | 2 | удовлетворяют уравнениям Максвелла | ||||||||||||||||
| E | , | B | E | B | |||||||||||||||||||||
| 
 | и поле | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| (2.161), то, в силу их линейности, | E1, B1 удовлетворяет этим | ||||||||||||||||||||||||
уравнениям. Это доказывает правомочность сделанного разложения. Но поле
| 
 | 
 | 2 , | 
 | 2 не зависит от времени и пространственных координат. | Поэтому, | по | ||||||||||||
| E | B | |||||||||||||||||
| 
 | 
 | 2 0 и | 
 | 2 0 . Следовательно, | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| доказанному выше, | E | B | E | E1 и | B | B1 , | т.е. | |||||||||||
| плоская волна является поперечной по отношению к фронтовой нормали | ez | |||||||||||||||||
| ( Ez 0 и Bz 0 ). | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
Займемся теперь решением волновых уравнений. В данном случае они
примут вид:
| 2 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | |
| B | 
 | 
 | 1 | B | 
 | , | |||||||
| z2 | 
 | c2 | 
 | t2 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 2 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | ||
| E | 
 | 
 | 
 | 1 | 
 | E | 
 | 
 | . | ||||
| z2 | 
 | 
 | c2 | 
 | t2 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
Решим первое уравнение. Введем новые независимые переменные:
z ct и z ct ;
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | B | 
 | B | B | 
 | B | ; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | |||||||||||||||||||||||||
| B | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | B | B | 
 | 
 | 
 | 
 | B | 
 | B | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ; | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| 
 | z2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | B | 
 | B | 
 | B | B | c | B | ; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | t | 
 | 
 | 
 | 
 | 
 | t | 
 | 
 | 
 | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | t2 | 
 | 
 | 
 | t | 
 | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | B | c2 | 
 | 
 | B | 
 | c2 | 2 | 
 | B | 
 | 
 | c2 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| Подставляя | 
 | 
 | найденные | 
 | 
 | 
 | значения | 
 | вторых | 
 | производных | в волновое | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
уравнение, получаем
 
143
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| B | 
 | 0 . | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | F . | 
 | |||||||||||
| 
 | 
 | 
 | B | 
 | 0 ; | 
 | 
 | B | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | B | F | B1 . | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| В | В1 z ct В2 z ct . | (2.169) | ||||||||||||||||||||||||||||||
| Совершенно аналогично | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| E | E1 z ct E2 z ct ; | (2.170) | ||||||||||||||||||||||||||||||
| На плоскостях z ct const , | движущихся в направлении вектора ez со | |||||||||||||||||||||||||||||||
скоростью с, сохраняется постоянное значение функций
B1 z ct и E1 z ct ,
а на плоскостях z ct const , движущихся в направлении противоположном
вектору ez с такой же скоростью с, сохраняется постоянное значение функций
B2 z ct и E2 z ct .
Таким образом, поля E1, B1 и E2 , B 2 описывают волновые процессы,
распространяющиеся в противоположные стороны. Говорят, что поле является суммой двух волн, распространяющихся навстречу друг другу. Волну B1 ,E1 ,
называют падающей (или прямой), а волну B 2 ,E2 - отраженной (или обратной).
Поскольку все свойства падающих и отраженных волн одинаковы, то далее подробно рассмотрим лишь падающую волну. Итак
B B z ct , E E z ct .
Покажем, что векторы E и B плоской волны перпендикулярны друг другу и найдем количественную связь между ними.
Опять обозначим z ct . Имеем:
B B B ;z z
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | |||
| B | B | c | B | ||||||||||||||
| t | t | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| Отсюда | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | 
 | 
 | ||||
| 
 | 
 | B | c | B | 
 | 
 | 
 | ||||||||||
| 
 | 
 | t | 
 | 
 | z | 
 | 
 | 
 | |||||||||
| Аналогично можно получить | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | 
 | 
 | ||||||
| 
 | 
 | E | c | E | 
 | 
 | 
 | ||||||||||
| 
 | 
 | t | 
 | 
 | z | 
 | 
 | 
 | |||||||||
С учетом этого запишем уравнения (2.165) и (2.166):
144
(2.171)
(2.172)
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 1 | B | 
 | 1 | E | 
 | |||||||||||
| 
 | 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | t | , | ||||||
| c | c | 2 | |||||||||||||||
| 
 | 
 | t | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | E | 
 | B | . | |||||||||||||
| 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | t | |||||||||
| 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | c | t | 
 | 
 | 
 | 
 | ||||||||||
Умножая первое из последних уравнений на c2 , а второе на (-1), получим
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| B | 
 | E | 
 | ||||
| c ez | 
 | 
 | 
 | 
 | t | , | |
| 
 | t | 
 | 
 | ||||
| 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| E | 
 | B | . | ||||||
| 
 | ez | 
 | 
 | 
 | t | ||||
| c | |||||||||
| 
 | t | 
 | 
 | ||||||
Интегрируем по времени последние уравнения:
| c e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z , | 
 | |||||||||||||
| B | E | E | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 1 | e | 
 | 
 | B | 
 | 
 | * z . | 
 | ||||||||||||||||
| E | B | 
 | ||||||||||||||||||||||
| 
 | c | 
 | ||||||||||||||||||||||
| 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| Теперь продифференцируем по z: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z | 
 | |||||||
| 
 | B | 
 | 
 | E | 
 | 
 | 
 | 
 | 
 | E | 
 | |||||||||||||
| c ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | , | |||||
| 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | z | ||||||||||||||
| 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z | 
 | 
 | ||||||
| 
 | 
 | E | В | 
 | 
 | 
 | В | 
 | 
 | |||||||||||||||
| 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | |||
| 
 | 
 | 
 | z | z | 
 | 
 | z | 
 | ||||||||||||||||
| 
 | c | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| Используя опять (2.171) и (2.172) получим | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | E* z | 
 | ||||||||||
| 
 | B | 
 | E | 
 | 
 | 
 | ||||||||||||||||||
| c ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | , | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | c t | 
 | z | 
 | |||||||||||||||
| 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 145 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | E | 
 | 
 | В | 
 | 
 | 
 | 
 | В | . | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | z | 
 | c t | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| Или: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | * z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | E | 
 | 
 | 
 | E | , | (2.173) | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 2 | 
 | 
 | 
 | 
 | t | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | E | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | ez | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | (2.174) | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | * z | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | Сопоставляя (2.173), (2.174) с (2.165), (2.166) заключаем, что | E | 0 и | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | z | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | * z | 0 . Следовательно, | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| B | 
 | 
 | 
 | * и | 
 | 
 | * | 
 | константы и они по предыдущему должны | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | E | B | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| быть равны нулю. Итак: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | E | 
 | В | 
 | , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (2.175) | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | ez | 
 | 
 | 
 | 
 | 
 | , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | B | E | 
 | 
 | 
 | (2.176) | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| т.е. в падающей плоской волне векторы E и B перпендикулярны и векторы E , | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | B , ez составляют правую тройку векторов (рис. | 2.79) (в отраженной волне, как | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| легко получить, левую тройку векторов). | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
Рис. 2.79. Взаимное расположение векторов E и B в падающей плоской волне
Как следует из (2.175) и (2.176), модули векторов связаны равенствами:
| E cВ, | B | E | 
 | . | (2.177) | |
| c | ||||||
| 
 | 
 | 
 | 
 | |||
| Учитывая, что c | 
 | 1 | 
 | 
 | , из (2.177) получаем | ||
| 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | ||||
| 
 | 
 | ||||||
| 
 | 
 | 0 | 0 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | E | 0 H . | |
| 
 | 
 | 
 | 
 | 
 | 
 | 0 | |
 
146
| Величина | 0 | имеет размерность сопротивления (Ом). Она | |
| 0 | |||
| 
 | 
 | 
называется волновым сопротивлением свободного пространства. Обозначается через Zc . Можно записать
| 
 | 
 | 
 | 
 | E Zc H , | 
| где | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
| Z | c | 
 | 0 | 120 Ом 377 Ом . | 
| 
 | 
 | 0 | 
 | |
| 
 | 
 | 
 | 
 | 
Рассмотрим энергетические процессы в волне. Плотность энергии поля:
| 
 | 
 | 
 | 
 | w | 
 | 0 | E2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | H 2 | 
 | 
 | 0 | E2 | 
 | 
 | 
 | 
 | E2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | , w | м | 
 | 
 | 0 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | w . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | э | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 2 0 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | э | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| Вектор Пойтинга (рис. 2.80): | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | e | 
 | 
 | 
 | 0 | E2e | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | E2e | 
 | c | 
 | E2e | 
 | w c e | 
 | 
 | |||||||||||||
| П | E Н | 
 | 
 | E | E | z | 
 | 0 | z | 0 | z | z | , | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 0 0 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
где w wэ wм .
Рис. 2.80. Вектор Пойтинга падающей плоской волны
Сдругой стороны, для вектора Пойтинга можно записать выражение
Пw v ,
где v – скорость переноса энергии.
Сопоставляя подчеркнутое выражение для П и последнее выражение,
находим
v c ez ,
т.е. c , будучи скоростью волнового фронта (фронтовой скоростью), является в то
же время скоростью переноса энергии поля.
 
147
Вопросы и задачи к лекции 13
149-1. Источники электромагнитного поля и равны нулю во всех точках пространства и в любой момент времени t ( t t1 ). Возможно ли существование такого магнитного поля B eх Bm sin t в указанные моменты времени t?
150-2. Источники электромагнитного поля и равны нулю во всех точках пространства и в любой момент времени t ( t t1 ). Возможно ли существование такого электрического поля E ey Em cos x в указанные моменты времени t?
151-3. Какому уравнению удовлетворяет поле B при отсутствии источников и в данной части пространства в любой момент времени?
Выведите это уравнение.
152-4. Какому уравнению удовлетворяет поле E при отсутствии источников и в данной части пространства в любой момент времени?
Выведите это уравнение.
153-5. Покажите, что плоская электромагнитная волна является поперечной по отношению к фронтовой нормали ez , т.е. Ez 0 и Bz 0 .
154-6. В фиксированный момент времени и в фиксированной точке вектор
B падающей плоской волны имеет значение B eх 0,1Тл ey 0,2 Тл . Найдите вектор E в этот же момент времени и в этой же точке.
155-7. Вектор E отраженной плоской волны в точке М в момент времени t
имеет направление, указанное на рис. 2.81, т.е. E M ,t ex Ex M ,t . Найдите направления векторов B и П в той же точке и в тот же момент времени.
Рис. 2.81. К определению направлений векторов П и B по заданному направлению E отраженной плоской волны
