Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kniga_Posl_redaktsia / книга посл.редакция / 15. Курсовые системы.doc
Скачиваний:
246
Добавлен:
18.03.2015
Размер:
731.65 Кб
Скачать

Глава 15. Курсовые системы ла

15.1. Состав курсовых систем

Курс является одним из важнейших параметров, знание которого необходимо для решения задач навигации и управления. Для определения курса самолётов была создана самая многочисленная группа курсовых приборов и систем, основанных на различных физических принципах работы. В состав курсовых систем (КСИ) входят различные приборы и системы. В частности: магнитные и индукционные компасы, гироскопические приборы и системы, астрокомпасы, радиокомпасы, доплеровские системы, а также элементы спутниковой навигации.

15.2. Гироскопические приборы, математическая модель, погрешности.

15.2.1. Гироскопические датчики

Гироскопом называют вращающееся вокруг оси симметрии с большой угловой скоростью тело вращения (ротор), одна из точек которого неподвижна. Ось z симметрии ротора 1 (рис.15.1) называют осью фигуры или осью ротора гироскопа.

В большинстве гироскопических приборов для обеспечения свободы вращения ротора гироскопа вокруг неподвижной точки применяют карданов подвес, который состоит из двух рамок 2 и 3. Ротор 1 гироскопа с большой угловой скоростью y вращается вокруг оси y1относительно внутренней рамки 2, которая может поворачиваться вокруг оси z относительно рамки 3, а последняя - вокруг оси x относительно неподвижной подставки 4.

Карданов подвес обеспечивает ротору гироскопа свободу вращения относительно трех осей (x, y1 и z). Поэтому гироскоп, установленный в кардановом подвесе, называют гироскопом с тремя степенями свободы. Если центр масс гироскопа совпадает с точкой пресечения осей карданова подвеса, то такой гироскоп называется астатическим.

z

x

y

Рис.15.1. Гироскоп в кардановом подвесе:

1 – ротор гироскопа; 2 – внутренняя рамка гироскопа; 3 – наружная рамка гироскопа;

4 – подставка; y – собственная угловая скорость вращения ротора гироскопа; x - вектор переносной угловой скорости.

Для рассмотрения математической модели гироскопа обратимся к рис.15.2. Положение ротора относительно подставки (оси ) определяется тремя углами ,  и , которые получаются при последовательных поворотах гироскопа и отклонении его собственных осей x, y и z от осей неподвижного основания.

Согласно рисунку H – кинетический момент гироскопа; Jx и Jy – моменты инерции ротора гироскопа относительно осей x и y.

Рис.15.2. Маховик с тремя степенями свободы – гироскоп

Уравнения движения гироскопа согласно принципу Д’Аламбера имеют вид

(15.1)

где и – внешние моменты, действующие вокруг осей x и y (моменты от сил сопротивления трения в осях корданова подвеса, момент от силы тяжести, моменты, накладываемые на гироскоп специальными коррекционными устройствами и т. д.).

Уравнения (15.1) можно переписать так:

(15.2)

где и- полное инерционное сопротивление, развиваемое гироскопом при действии на него внешних моментови.

В теоретической механике при изучении законов движения гироскопа различают свободное и вынужденное движение гироскопа; свободное движение гироскопа, называемое нутацией, представляет собой движение по инерции, когда моменты внешних сил не действуют на гироскоп. Движение гироскопа, нагруженного моментом внешних сил, представляет собой совокупность вынужденного и свободного движения. Вынужденное движение гироскопа называется прецессией.

Закон нутационного движения можно получить, приняв в уравнениях (2) ==0.

Тогда

(15.3)

Решая систему уравнений (15.3) получаем дифференциальные уравнения, описывающие нутационное движение гироскопа.

(15.4)

Закон прецессии гироскопа можно получить из уравнений (15.2), если пренебречь инерционными моментами ипо сравнению с гироскопическими моментамии. Тогда имеем

(15.5)

Наиболее важными бортовыми гироскопическими приборами являются авиагоризонты, указатели поворота, гирополукомпасы, а также выключатели коррекции.