
- •Содержание
- •Силы, действующие в жидкости. Давление
- •Основные физические свойства жидкостей и газов
- •Плотность и удельный вес
- •Вязкость
- •Сжимаемость
- •Температурное расширение
- •Раздел 1. Основы гидростатики
- •Тема 1.1 Основы гидростатики
- •Способы измерения давления
- •Сила давления на плоскую стенку
- •Сила давления на криволинейные стенки. Плавание тел
- •Относительный покой жидкости
- •Тема 1.2 Основы гидродинамики Основные понятия и определения
- •Расход. Уравнение расхода
- •Уравнение Бернулли для струйки идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Экспериментальная (графическая) иллюстрация уравнения Бернулли
- •Основы гидродинамического подобия
- •Режимы течения жидкости
- •Течение капельной жидкости с кавитацией
- •Тема 1.3 Гидравлические машины. Общие сведения о гидросистемах
- •Гидромашины, их общая классификация и основные параметры.
- •Объемный гидропривод, принцип действия и основные понятия
- •Струйные насосы
- •Центробежные насосы
- •Коэффициенты полезного действия центробежного насоса
- •Шестеренные насосы Гидравлические машины шестеренного типа
- •Пластинчатые насосы и гидромоторы
- •Раздел 2.
- •Работа расширения или сжатия газа
- •Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- •Адиабатный процесс
- •Политропный процесс
- •Тема 2.2 Термодинамические циклы, использование в промышленных установках.
- •Дизельные
- •Газовые
- •Газодизельные
- •Роторно-поршневой
- •Двухступенчатая холодильная машина
- •Тема 2.3 Основные элементы пневматических систем
- •Принципы построения пневмосистем
- •Раздел 3 Элементы гидравлического и пневматического привода. Комбинированные системы.
- •Список используемой литературы
Объемный гидропривод, принцип действия и основные понятия
Гидроприводы в зависимости от типа используемых в них гидромашин делятся на объемные гидроприводы и гидродинамические передачи.
Объемный гидропривод — это гидропривод, в котором используются объемные гидромашины. Принцип действия объемного гидропривода основан на практической несжимаемости рабочей жидкости и на ее свойстве передавать давление по всем направлениям в соответствии с законом Паскаля.
Рассмотрим работу простейшего объемного гидропривода, принципиальная схема которого приведена на рис. 5.1. Он состоит из двух гидроцилиндров 1 и 2, расположенных вертикально. Нижние полости в них заполнены жидкостью и соединены трубопроводом.
Пусть поршень гидроцилиндра 1, имеющий площадь S1, под действием внешней силы F1 перемещается вниз с некоторой скоростью V1. При этом в жидкости создается давление р = F1/S1. Если пренебречь потерями давления на движение жидкости в трубопроводе, то это давление передается жидкостью по закону Паскаля в гидроцилиндр 2 и на его поршне, имеющем площадь S2, создает силу, преодолевающую внешнюю нагрузку F2 = pS2.
Считая жидкость несжимаемой, можно утверждать, что количество жидкости, вытесняемое поршнем гидроцилиндра 1 (расход Q = v1S1), поступает по трубопроводу в гидроцилиндр 2, поршень которого перемещается со скоростью v2 = Q/S2, направленной вверх (против внешней нагрузки F2).
Если пренебречь потерями энергии в элементах гидропривода, то можно утверждать следующее. Механическая мощность N1 = F1v1, затрачиваемая внешним источником на перемещение поршня гидроцилиндра 1, воспринимается жидкостью, передается ею по трубопроводу и в гидроцилиндре 2 совершает полезную работу в единицу времени против внешней силы F2 со скоростью v2 (реализуется мощность N2 = F2v2). Этот процесс можно представить в виде следующего уравнения мощностей:
Таким образом, гидроцилиндр 1 в рассмотренном случае работает в режиме насоса, т.е. преобразует механическую энергию привода в энергию потока рабочей жидкости, а гидроцилиндр 2 совершает обратное действие — преобразует энергию потока жидкости в механическую работу, т.е. выполняет функцию гидродвигателя.
На основание анализа работы этого простейшего объемного гидроприво-да, а также принимая во внимание задачи, которые
Рис.
5.1. Принципиальная схема простейшего
объемного гидропривода: 1- гидроцилиндр,
работающий в режиме насоса; 2- гидроцилиндр,
работающий в режиме гидравлического
двигателя
необходимо решать по управлению гидроприводом и обеспечению его работоспособности, можно заключить, что реальный объемный гидропривод обязательно должен включать в себя следующие элементы или группы элементов (число перечисленных ниже элементов в составе гидропривода не ограничивается):
энергопреобразователи — устройства, обеспечивающие преобразование механической энергии в гидроприводе: гидромашины, гидроаккумуляторы и гидропреобразователи;
гидросеть — совокупность устройств, обеспечивающих гидравлическую связь элементов гидропривода: рабочая жидкость, гидролинии, соединительная арматура и т.п.;
кондиционеры рабочей среды — устройства для поддержания заданных качественных показателей состояния рабочей жидкости (чистота, температура и т.п.): фильтры, теплообменники и т.д.;
гидроаппараты — устройства для изменения или поддержания заданных значений параметров потоков (давления, расхода и др.): гидродроссели, гидроклапаны и гидрораспределители.
По виду источника энергии жидкости объемные гидроприводы делятся на три типа.
1. Насосный гидропривод — в нем источником энергии жидкости является объемный насос, входящий в состав гидропривода. По характеру циркуляции рабочей жидкости насосные гидроприводы разделяют на гидроприводы с разомкнутой циркуляцией жидкости (жидкость от гидродвигателя поступает в гидробак, из которого всасывается насосом) и с замкнутой циркуляцией жидкости
(жидкость от гидродвигателя поступает сразу во всасывающую гид ролинию насоса).
Аккумуляторный гидропривод — в нем источником энергии жидкости является предварительно заряженный гидроаккумулятор. Такие гидроприводы используются в гидросистемах с кратковременным рабочим циклом или с ограниченным числом циклов (например гидропривод рулей ракеты).
Магистральный гидропривод — в этом гидроприводе рабочая жидкость поступает в гидросистему из централизованной гидравлической магистрали с заданным располагаемым напором (энергией).
Гидроприводы подразделяются также по виду движения выходного звена. Выходным звеном гидропривода считается выходное звено гидродвигателя, совершающее полезную работу. По этому признаку выделяют следующие объемные гидроприводы:
поступательного движения — в них выходное звено совершает возвратно-поступательное движение;
вращательного движения — в них выходное звено совершает вращательное движение;
поворотного движения — в них выходное звено совершает ограниченное (до 360°) возвратно-поворотное движение (применяются крайне редко).
Если в гидроприводе имеется возможность изменять только направление движения выходного звена, то такой гидропривод называется нерегулируемым. Если в гидроприводе имеется возможность изменять скорость выходного звена как по направлению, так и по величине, то такой гидропривод называется регулируемым.
Основные преимущества и недостатки объемных гидроприводов
Регулируемые объемные гидроприводы широко используются в качестве приводов станков, прокатных станов, прессового и литейного оборудования, дорожных, строительных, транспортных и сельскохозяйственных машин и т. п. Такое широкое их применение объясняется рядом преимуществ этого типа привода по сравнению с механическими и электрическими приводами. Основные из этих преимуществ следующие.
Высокая удельная мощность гидропривода, т.е. передаваемая мощность, приходящаяся на единицу суммарного веса элементов. Этот параметр у гидравлических приводов в 3...5 раз выше, чем у электрических, причем данное преимущество возрастает с ростом передаваемой мощности.
Относительно просто обеспечивается возможность бесступенчатого регулирования скорости выходного звена гидропривода в широком диапазоне.
Высокое быстродействие гидропривода. Операции пуска, реверса и останова выполняются гидроприводом значительно быстрее, чем другими приводами. Это обусловлено малым моментом инерции исполнительного органа гидродвигателя (момент инерции вращающихся частей гидромотора в 5... 10 раз меньше соответствующего момента инерции электродвигателя).
Высокий коэффициент усиления гидроусилителей по мощности, значение которого достигает «105,
Сравнительная простота осуществления технологических операций при заданном режиме, а также возможность простого и надежного предохранения приводящего двигателя и элементов гидропривода от перегрузок.
Простота преобразования вращательного движения в возвратно-поступательное.
Свобода компоновки агрегатов гидропривода.
Наряду с отмеченными достоинствами гидропривода, при его проектировании или решении вопроса о целесообразности его использования следует помнить также и о недостатках, присущих этому типу привода. Эти недостатки обусловлены в основном свойствами рабочей среды (жидкости). Отметим основные из этих недостатков.
Сравнительно невысокий КПД гидропривода и большие потери энергии при ее передаче на большие расстояния.
Зависимость характеристик гидропривода от условий эксплуатации (температура, давление). От температуры зависит вязкость рабочей жидкости, а низкое давление может стать причиной возникновения кавитации в гидросистемеиливыделения из жидкости растворенных газов.
3. Чувствительность к загрязнению рабочей жидкости и необходимость достаточно высокой культуры обслуживания. Загрязнение рабочей жидкости абразивными частицами приводит к быстрому износу элементов прецизионных пар в гидравлических агрегатах и выходу их из строя.
4.Снижение КПД и ухудшение характеристик гидропривода по мере выработки им или его элементами эксплуатационного ресурса. Прежде всего происходит износ прецизионных пар, что приводит к увеличению зазоров в них и возрастанию утечек жидкости, т. е. снижению объемного КПД.
Таким образом, гидравлические приводы имеют, с одной стороны, неоспоримые преимущества по сравнению с другими типами приводов, а с другой стороны — существенные недостатки. В связи с этим перед специалистами, связанными с проектированием, изготовлением и обслуживанием гидроприводов, ставятся определенные задачи.
Задачами конструктора при проектировании гидропривода являются оптимизация его схемы, обеспечивающей выполнение приводом функциональных требований, и обоснованный выбор элементов гидропривода.
Задачами технолога при изготовлении элементов гидропривода являются обеспечение требуемого высокого качества изготовления, так как это оказывает колоссальное влияние на эксплуатационные характеристики гидропривода. Так, в прецизионных парах, современных гидравлических агрегатов зазоры составляют 5 мкм и г менее. Обеспечить такую точность достаточно сложно.
В задачи обслуживающего персонала во время эксплуатации гидропривода входит выполнение технических условий и требований по его эксплуатации, заключающееся прежде всего в выполнении правил монтажа гидропривода, регулярной смене фильтрующих элементов фильтров и замене рабочей жидкости, а также при необходимости в ее доливке. Выполнение этих требований позволяет значительно продлить срок службы как отдельных элементов гидропривода, так и всего гидропривода в целом.