- •Гидравлические машины в нефтегазовом деле
- •131000 «Нефтегазовое дело»
- •Содержание
- •1 Введение
- •2 Общие сведения о насосах
- •2.1 Лопастные насосы. Основные параметры
- •2.2 Классификация лопастных насосов
- •3. Центробежные насосы
- •3.1 Устройство и принцип действия центробежного насоса
- •3.2 Осевое усилие в центробежных насосах и способы уравновешивания
- •3.3 Движение жидкости в каналах рабочего колеса центробежного насоса
- •3.4 Основное уравнение проточных машин
- •3.5 Составляющие части теоретического напора рабочего колеса
- •3.6 Зависимость теоретического напора от подачи насоса
- •3.7 Влияние угла выхода из рабочего колеса на величину и составляющие части теоретического напора
- •3.8 Влияние конечного числа лопаток на величину теоретического напора
- •3.9 Мощность и кпд центробежных насосов
- •3.10 Характеристики центробежного насоса
- •3.11 Основы теории подобия лопастных насосов
- •3.12 Универсальная характеристика центробежного насоса
- •3.13 Кавитация в центробежных насосах
- •3.13.1 Сущность кавитационных явлений
- •3.13.2 Определение критического кавитационного запаса
- •3.13.3 Определение допустимой высоты всасывания насоса
- •3.13.4 Пути повышения кавитационных качеств насоса
- •3.14 Работа центробежного насоса на трубопроводную сеть
- •3.15 Устойчивость работы центробежного насоса
- •3.16 Совместная работа центробежных насосов
- •3.17 Регулирование работы центробежных насосов
- •3.17.1 Воздействие на коммуникацию
- •3.17.2 Воздействие на привод насоса
- •3.17.3 Воздействие на конструкцию насоса
- •3.18 Работа центробежных насосов на вязких жидкостях
- •4 Осевые насосы
- •4.1 Устройство и принцип действия
- •4.2 Основные показатели работы осевого насоса
- •4.3 Рабочая характеристика осевого насоса. Выбор насосов
- •5 Объемные насосы и их классификация
- •5.1 Поршневые насосы. Принцип действия и классификация
- •5.2 Идеальная и действительная подача поршневых насосов
- •5.3 Закон движения поршня приводного насоса
- •5.4 Неравномерность подачи поршневых насосов
- •5.5 Процессы всасывания и нагнетания жидкости в поршневом насосе
- •5.6 Графическое представление изменения напоров в цилиндре насоса
- •5.7 Условия нормальной работы поршневого насоса
- •5.8 Теоретический цикл работы поршневого насоса
- •5.9 Процессы всасывания и нагнетания с пневмокомпенсаторами
- •5.10 Расчет пневмокомпенсаторов
- •5.11 Мощность и кпд поршневого насоса
- •5.12 Испытание поршневого насоса
- •5.13 Рабочие характеристики поршневых насосов
- •5.14 Регулирование подачи поршневых насосов
- •5.15 Клапаны поршневых насосов
- •5.15.1 Назначение, устройство клапанов и требования, предъявляемые к клапанам
- •5.15.2 Основы теории работы клапанов
- •5.15.3 Безударная работа клапанов
- •6 Роторные насосы
- •6.1 Шестеренные насосы
- •6.2 Винтовые насосы
- •Основным недостатком винтовых насосов является значительная технологическая трудность изготовления винтов.
- •6.3 Пластинчатые насосы
- •6.4 Радиально - и аксиально-поршневые насосы
- •7 Гидротурбины
- •7.1 Основные показатели гидротурбин
- •7.2 Устройство и классификация турбин
- •7.3 Турбина турбобура
- •7.4 Движение жидкости в каналах турбин
- •7.5 Число оборотов ротора турбины
- •7.6 Определение вращающего момента турбины
- •7.7 Коэффициенты турбинных решеток
- •7.8 Перепад давления в турбине турбобура
- •7.9 Мощность и кпд турбин турбобура
- •7.10 Комплексная рабочая характеристика турбины турбобура
- •7.11 Подобие гидравлических турбин
- •8 Компрессоры
- •8.1 Классификация компрессоров
- •8.2 Применение компрессоров в нефтегазовой промышленности
- •8.3 Основные рабочие параметры компрессоров
- •8.4 Поршневые компрессоры, их классификация
- •8.5 Работа, совершаемая поршнем за один цикл.
- •8.6 Производительность и подача поршневого компрессора
- •8.7 Многоступенчатое сжатие
- •8.8 Мощность и кпд поршневого компрессора
- •8.9 Ротационные компрессоры
- •8 .9.1 Пластинчатый ротационный компрессор
- •8.9.2. Жидкостно-кольцевой компрессор
- •8.10 Лопастные компрессоры
- •8.11 Подача лопастных компрессоров
- •8.12 Мощность и кпд лопастных насосов
- •8.13 Рабочая характеристика лопастных компрессоров
- •8.14 Параллельная и последовательная работа лопастныхкомпрессоров
- •8.15 Регулирование лопастных компрессоров
- •8.16 Особенности эксплуатации лопастных компрессоров
- •Список литературы
7.10 Комплексная рабочая характеристика турбины турбобура
Характеристика турбин турбобура графически может быть представлена линиями вращающего момента, эффективной мощности, перепада давления и КПД в зависимости от числа оборотов вала турбин при постоянном расходе жидкости.
При испытании на стенде зависимости перепада давления и момента от числа оборотов получаются непосредственным замером показаний приборов давления, установленных на входе и выходе из турбин, замером силы оборотов по тахометру, расхода жидкости по расходомеру (подача насоса), момент замеряется с помощью устройств, обеспечивающих передачу усилия на весы. Например, на валу турбин устанавливается тормоз с рычагом, оказывающим давление на площадку весов.
Зависимости эффективной мощности и КПД от числа оборотов получаются в результате расчетов.
Стендовая характеристика турбин показана на рисунке 7.22.

Рисунок 7.22
Наиболее
важными при работе турбин являются
следующие режимы:
режим тормозной, соответствующий
остановке турбины (п=0)
при
больших нагрузках на валу (М=Мтах);
режим
работы турбины при п
=
пЭКСТР
,
когда мощность турбины достигает
максимального значения
,
называют экстремальным; режим
работы турбины приКПД
- оптимальный. Оптимальный режим
располагается междуэкстремальным
и безударным, но для турбин нормальной
циркуляции
= 1 все три режима совпадают
.
Снижение нагрузки навалу
турбин ведет к увеличению числа оборотов
и, когда нагрузка полностью
отсутствует, наступает режим холостого
хода (
).
7.11 Подобие гидравлических турбин
Для
обобщения и анализа исследований
индивидуальных характеристик
(рисунок 7.23) модельных образцов турбин
турбобуров заданных размеров (DM
,
M
и
т.д.), испытанных в определенных условиях,
т.е. при определенном расходе жидкости
QM
и
ее физических свойствах,при
создании новых турбин пользуются общей
теорией подобия, которая предполагает:
геометрическое подобие - пропорциональность линейных размеров, шероховатостей модели и натуры и равенство сходственных углов входных и выходных элементов лопаток;
кинематическое подобие, т.е. подобие полей скоростей (полигонов) в сходственных точках модели и натуры;
динамическое подобие, т.е. пропорциональность сил, действующих на сходственные элементы модели и натуры.
Первое условие обеспечивается одинаковым масштабом линейного моделирования и равенством конструктивных углов:
![]()
Кинематическое подобие предусматривает соотношения скоростей:
![]()
Поскольку
основными силами, действующими в потоке
жидкости, являются
силы вязкости и инерции, условие
динамического подобия
соответствует равенству чисел Рейнольдса:
.
В большинстве случаев турбины работают в условиях автомодельности, когда определяющим фактором является не число Re, а шероховатость, т.е. для подобия достаточно двух первых условиях.
Чтобы определить показатели работы турбин данной серии (Ке = const) при различных расходах и физических свойствах жидкости,необходимо составить следующие соотношения.
Так, числа оборотов вращения вала двух турбин одной серии равны:
![]()
Зная,
что осевая скорость Сz
турбины равна
,
получим
,
но
,
вращающие моменты:
![]()
мощности турбины:

перепад давления в турбинах:

Если турбины турбобура работают на одной и той же жидкости (р = const), то при изменении подачи насоса на основании общих формул подобия можно определить все показатели работы:
![]()
![]()
![]()
![]()
При испытаниях турбин моделирование не применяется, но, при пересчете характеристик односерийных турбобуров различных диаметров формулы подобия необходимы.
