
- •Федеральное агентство по образованию
- •Глава 3. Растровая графика. Базовые растровые алгоритмы 37
- •Глава 4. Векторная графика 77
- •Глава 5. Фрактальная графика 90
- •Глава 6. Цветовые модели компьютерной графики 95
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов 128
- •Глава 8. Реалистическое представление сцен 146
- •Глава 9. Архитектуры графических систем 172
- •Глава 10. Стандартизация в компьютерной графике 180
- •Глава 11. Форматы графических файлов 196
- •Глава 12. Технические средства кг (оборудование кг) 214
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Координаты и преобразования
- •2.1 Координатный метод
- •2.1.1. Преобразование координат
- •Простейшие двумерные преобразования
- •Однородные координаты и матричное представление двумерных преобразований
- •Композиция двумерных преобразований
- •Матричное представление трехмерных преобразований
- •Композиция трехмерных преобразований
- •Преобразование объектов
- •Преобразование как изменение систем координат
- •2.1.2 Аффинные преобразования на плоскости
- •2.2 Проекции
- •2.2.1 Мировые и экранные координаты
- •2.2.2 Основные типы проекций
- •При повороте на угол β относительно оси у (ординат), на угол α вокруг оси х (абсцисс) и последующем проектировании осиZ (аппликат) возникает матрица
- •Глава 3. Растровая графика. Базовые растровые алгоритмы
- •3.1 Растровые изображения и их основные характеристики
- •3.2 Вывод изображений на растровые устройства
- •3.3 Методы улучшения растровых изображений
- •3.21. Диагональное расположение ячеек 5x5
- •3.22. Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •3.24. Набор чм-ячеек 5x5
- •3.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инкрементные алгоритмы
- •Кривая Безье
- •Алгоритмы вывода фигур
- •Алгоритмы закрашивания
- •Стиль заполнения
- •3.5 Инструменты растровых графических пакетов
- •Инструменты выделения. Каналы и маски
- •Выделение
- •Инструменты выделения и маскирования
- •Гистограммы
- •Тоновая коррекция изображения
- •Уровни (Levels)
- •Цветовая коррекция и цветовой баланс
- •Фильтры (Plug-ins) и спецэффекты (Effects)
- •3.6 Преимущества и недостатки растровой графики
- •Глава 4. Векторная графика
- •4.1 Средства создания векторных изображений
- •4.2 Сравнение механизмов формирования изображений в растровой и векторной графике
- •4.3 Структура векторной иллюстрации
- •4.4 Математические основы векторной графики
- •4.5. Элементы (объекты) векторной графики
- •4.6. Достоинства и недостатки векторной графики
- •Глава 5. Фрактальная графика
- •5.1 Математика фракталов. Алгоритмы фрактального сжатия изображений
- •5.2 Обзор основных фрактальных программ
- •Глава 6. Цветовые модели компьютерной графики
- •6.1 Элементы цвета
- •6.1.1 Свет и цвет
- •6.1.2 Физическая природа света и цвета
- •6.1.3 Излученный и отраженный свет
- •6.1.4 Яркостная и цветовая информация
- •6.1.5 Цвет и окраска
- •6.2 Характеристики источника света
- •Стандартные источники
- •6.2.2 Особенности восприятия цвета человеком
- •Колбочки и палочки
- •Спектральная чувствительность глаза к яркости
- •Спектральная чувствительность наблюдателя
- •6.3 Цветовой и динамический диапазоны
- •6.4 Типы цветовых моделей
- •6.4.1 Аддитивные цветовые модели
- •Почему rgb-модель нравится компьютеру?
- •Ограничения rgb-модели
- •SRgb — стандартизированный вариант rgb-цветового пространства
- •6.4.2 Субтрактивные цветовые модели
- •Цветовая модель cmy
- •Ограничения модели cmyk
- •Возможности расширения цветового охвата cmyk
- •6.4.3 Перцепционные цветовые модели
- •Достоинства и ограничения hsb-модели
- •6.4.4 Системы соответствия цветов и палитры
- •Системы соответствия цветов
- •Назначение эталона
- •Кодирование цвета. Палитра
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов
- •7.1 Модели описания поверхностей
- •7.1.1. Аналитическая модель
- •7.1.2 Векторная полигональная модель
- •7.1.3 Воксельная модель
- •7.1.4 Равномерная сетка
- •7.1.5 Неравномерная сетка. Изолинии
- •7.2. Визуализация трехмерных объектов
- •7.2.1 Каркасная визуализация
- •7.2.2 Показ с удалением невидимых точек
- •Глава 8. Реалистическое представление сцен
- •8.1 Закрашивание поверхностей
- •8.1.1 Модели отражения света
- •8.1.2 Вычисление нормалей и углов отражения
- •8.2 Метод Гуро
- •8.3 Метод Фонга
- •8.4. Имитация микрорельефа
- •8.5 Трассировка лучей
- •8.6 Анимация
- •Глава 9. Архитектуры графических систем
- •9.1 Суперстанции
- •9.2 Компоненты растровых дисплейных систем
- •9.3 Подходы к проектированию графических систем
- •9.4 Графические системы на базе сопроцессора i82786
- •9.5 Графические системы из набора сверх больших интегральных схем (сбис)
- •9.6 Растровый графический процессор dp-8500
- •9.7 Графические системы на универсальном процессоре
- •9.8 Высокоскоростные графические системы
- •9.9 Рабочие (супер)станции с использованием универсального вычислителя
- •Глава 10. Стандартизация в компьютерной графике
- •10.2 Международная деятельность по стандартизации в машинной графике
- •Деятельность iso, iec по стандартизации в машинной графике
- •10.3 Классификация стандартов
- •10.4 Графические протоколы
- •10.4.1 Аппаратно-зависимые графические протоколы
- •Протокол tektronix
- •Протокол regis
- •Протокол hp-gl
- •10.4.2 Языки описания страниц
- •Язык PostScript
- •Язык pcl
- •10.4.3 Аппаратно-независимые графические протоколы
- •10.4.4 Проблемно-ориентированные протоколы
- •Глава 11. Форматы графических файлов
- •11.1 Векторные форматы
- •11.2 Растровые форматы
- •11.3 Методы сжатия графических данных
- •11.4 Преобразование файлов из одного формата в другой
- •Преобразование файлов из растрового формата в векторный
- •Преобразование файлов одного векторного формата в другой
- •Глава 12. Технические средства кг (оборудование кг)
- •12.1 Видеоадаптеры
- •12.2 Манипуляторы
- •Дигитайзер
- •12.3 Оборудование мультимедиа
- •12.4 Мониторы
- •Характеристики мониторов
- •Аналоговые мониторы
- •Жидкокристаллические дисплеи
- •Газоплазменные мониторы
- •Видеокарта
- •Функции графического ускорителя
- •Выбор видеокарты под монитор
- •12.5 Видеобластеры
- •12.6 Периферия
- •12.6.1 Принтеры
- •12.6.2 Имиджсеттеры
- •12.6.3 Плоттеры
- •12.7 Модемы
- •12.8 Звуковые карты
- •12.9 Сканеры
- •Планшетные сканеры
- •12.10 Секреты графических планшетов (дигитайзеров)
- •Достоинства и недостатки графических планшетов
- •12.11 Цифровые фотоаппараты и фотокамеры
- •Литература
7.1.3 Воксельная модель
Воксельная
модель –
это трехмерный
растр. Воксел это элемент объема. По
аналогии с 2D
растрами, состоящими из пикселов. Вокселы
заполняют объем в трехмерном растре
(рис.7.9)
Рис. 7.9. Пикселы и вокселы
Как мы знаем, любой пиксел должен иметь свой цвет. Любой воксел также имеет свой цвет, и, кроме того, прозрачность. Полная прозрачность воксела означает пустоту соответствующей точки объема.
Поскольку вокселы располагаются в узлах равномерной сетки, то, обычно, чем меньше шаг сетки, тем большее количество вокселов помещается в определенном объеме, и тем меньший размер каждого отдельного воксела. Основная характеристика вексельной модели — разрешающая способность — количество вокселов в определенном объеме. Она и определяет точность моделирования трехмерных объектов (рис. 7.10).
Для современной КГ вексельный метод считается одним из перспективных. Его используют в компьютерных системах, предназначенных для медицинских целей.
Например, при сканировании томографом (computed tomography) получаются изображения срезов объекта, которые потом объединяются в виде объемной модели для дальнейшего анализа. Вексельный метод используется в геологии, сейсмологии, в компьютерных играх. Вокселы также используются для графических устройств отображения, которые создают действительно объемные изображения.
Положительные черты воксельной модели:
достаточно простое описание сложных объектов и сцен;
простая процедура отображения объемных сцен;
простое выполнение топологических операций над отдельными объектами и сценой в целом. Например, просто выполняется показ разреза — для этого соответствующие вокселы можно сделать прозрачными.
Рис. 7.10. Воксельная модель шара и ее разрезы.
Недостатки воксельной модели:
большое количество информации, необходимой для представления объемных данных. Например, объем 256x256x256 имеет небольшую разрешающую способность, но требует свыше 16 миллионов вокселов;
значительные затраты памяти ограничивают разрешающую способность, точность моделирования;
большое количество вокселов обуславливает маленькую скорость создания изображений объемных сцен;
как и для любого растра, возникают проблемы при масштабировании — увеличении или уменьшении.
7.1.4 Равномерная сетка
Эта модель описывает координаты отдельных точек поверхности следующим способом (рис. 7.11). Каждому узлу сетки с индексами (i,j) приписывается значение высотыzi,j. Индексам (i,j) соответствуют определенные значения координат (х,у). Расстояние между узлами одинаковое —dx по оси х иdyпо оси у.
Фактически, такая модель является двумерным массивом (растром, матрицей), каждый элемент которой хранит значение высоты.
Рис. 7.11. Узлы равномерной сетки
Рис. 7.12. Точка в сетке с координатами (x, y, z)
Не каждая поверхность может быть представлена этой моделью. Если в каждом узле записывается только одно значение высоты, то это означает, что поверхность описывается однозначной функцией z=f(xy). Иначе говоря, это такая поверхность, которую любая вертикаль пересекает только один раз. Не могут моделироваться также вертикальные грани. Следует отметить, что для сетки не обязательно использовать только декартовы координаты. Например, для того, чтобы описать поверхность шара однозначной функцией, можно использовать полярные координаты. Равномерная сетка часто используется для описания рельефа земной поверхности.
Рассмотрим, как можно рассчитать значение высоты для любой точки внутри границ сетки. Пусть ее координаты равняются (х, у). Надо найти соответствующее значение z. Решение этой задачи — интерполяция значений координат 2 ближайших узлов (рис 7.12).
Сначала необходимо вычислить индексы i и j одного из узлов:
где ]а[ — целая часть числаа, то есть наибольшее целое, которое не превышаета.
Далее используем, например, билинейную интерполяцию. Для этого сначала найдем значенияг в точкахА и В. Из пропорции
учитывая, что xj+1 - xj = dx, будем иметь:
Аналогично найдем
Теперь нужно вычислить такое значение z, поделив отрезок АВ пропорционально значению у:
И будем иметь: z
= zА + (y
– yi)
Положительные черты равномерной сетки:
1. Простота описания поверхностей
2. Возможность быстро узнать высоту любой точи поверхности простой интерполяцией.
Недостатки равномерной сетки:
1. Поверхности, которые соответствуют неоднозначной функции высоты в узлах сетки, моделироваться не могут
2. Для описания сложных поверхностей нужно большое количество узлов, которое может быть ограничено объемом памяти компьютера
3. Описание отдельных типов поверхностей может быть более сложным, чем в других моделях. Например, многогранная поверхность требует избыточный объем данных для описания в сравнении с полигональной моделью.