Ответы к экзамену 1
.pdfосмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином.
Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.
Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения. Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрат). Такими веществами являются инулин, маннитол. Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Физиологический смысл этого явления будет раскрыт при описании механизма реабсорбции.
Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный.
Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Nа+, который происходит при участии фермента Nа+-К+-АТФазы, использующей энергию АТФ.
Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Nа+. Этот комплекс (переносчик + органическое вещество + Nа+) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Nа+-К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.
Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта — по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода,
причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.
Достижения в области молекулярной биологии позволили установить строение молекул ионных и водных каналов (аквапорины), рецепторов, гормонов и тем самым проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Различны свойства клеток разных отделов нефрона, неодинаковы свойства цитоплазматичсской мембраны в одной и той же клетке. Апикальная мембрана клетки, обращенная в просвет канальца, имеет иные характеристики, чем се базальная и боковые мембраны, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному; специфично и действие биологически активных веществ на ту и другую мембраны.
Клеточный механизм реабсорбции ионов рассмотрим на примере Nа+. В
проксимальном канальце нефрона всасывание Nа+ в кровь происходит в результате ряда процессов, один из которых — активный транспорт Nа+ из просвета канальца, другой — пассивная реабсорбция Nа+ вслед за активно транспортируемыми в кровь как ионами гидрокарбоната, так и СI-. При введении одного микроэлектрода в просвет канальцев, а второго — в околоканальцевую жидкость было выявлено, что разность потенциалов между наружной и внутренней поверхностью стенки проксимального канальца оказалась очень небольшой — около 1,3 МВ; в области дистального канальца она может достигать 60 мВ (рис. 11.4). Просвет обоих канальцев электроотрицателен, а в крови (следовательно, и во внеклёточной жидкости) концентрация Nа+ выше, чем в жидкости,находящейся в просвете этих канальцев, поэтому реабсорбция Nа+ осуществляется активно против градиента электрохимического потенциала. При этом из просвета канальца Nа+ входит в клетку по натриевому каналу или при участии переносчика.
Внутренняя часть клетки заряжена отрицательно, и положительно заряженный Na+ поступает в клетку по градиенту потенциала, движется в сторону базальной плазматической мембраны, через которую натриевым насосом выводится в межклеточную жидкость; градиент потенциала на этом мембране достигает 70—90 МВ.
Имеются вещества, которые могут влиять на отдельные элементы системы реабсорбции Nа+. Так, натриевый канал в мембране клетки дистального канальца и собирательной трубки блокируия амилоридом и триамтереном, в результате чего Nа+ не может войти в канал. В клетках имеется несколько типов ионных насосов. Один из них представляет собой Nа+-К+-АТФазу. Этот фермент находится в базальной и латеральных мембранах клетки и обеспечивает транспорт Nа+ из клетки в кровь и
поступление из крови в клетку К+. Фермент угнетается сердечными гликозидами, например строфантином, уабаином. В реабсорбции гидрокарбоната важная роль принадлежит ферменту карбоангидразе, ингибитором которого является ацетазоламид
— он прекращает реабсорбцию гидрокарбоната, который экскретируется с мочой.
Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное (не более 130 мг) ее количество. Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальная) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Nа+, после чего комплекс транспортируется через апикальную мембрану, т.е. в цитоплазму поступают глюкоза и Nа+. Апикальная мембрана отличается высокой селективностъю и односторонней проницаемостью и не пропускает ни глюкозу, ни Nа+ обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, а Nа+, как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.
Аминокислоты почти полностью реабсорбируются клетками проксимальный канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из этих аминокислот начинается усиленная экскреция почкой аминокислот (аминоацидурация).
Выделение с мочой слабых кислот и оснований зависит от их клубочковой фильтрации, процесса реабсорбции или секреции. Процесс выведения этих веществ во многом определяется «неионной диффузией», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Слабые кислоты и основания могут существовать в зависимости от рН среды в двух формах — неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большей скоростью экскретируются с щелочной мочой, а слабые основания, напротив, — с кислой. Степень ионизации оснований увеличивается в кислой среде, но уменьшается в основной. В неионизированном состоянии зги вещества через липиды мембран проникают в клетки, а затем в плазму крови, т.е. они реабсорбируются. Если значение рН канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой. Никотин — слабое основание, при рН 8,1 ионизируется 50 %, в 3—4 раза быстрее экскретируется с кислой (рН около 5), чем с основной (РН 7,8) мочой. Процесс «неионной диффузию влияет на выделение почками слабых оснований и кислот, барбитуратов и других лекарственных веществ.
Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг/сут, а при заболеваниях почек оно может возрастать до 50 г/сут. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.
Вотличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Однако не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.
91.Канальцевая секреция. Локализация секреции веществ в почечных канальцах.
Ввыделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Этот дополнительный механизм выделения ряда веществ, помимо их фильтрации в клубочках, позволяет быстро экскретировать некоторые органические кислоты и основания, а также некоторые ионы, например, К Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках.
В выделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Этот дополнительный механизм выделения ряда веществ, помимо их фильтрации в клубочках, позволяет быстро экскретировать некоторые органические кислоты и основания, а также некоторые ионы, например, К Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках.
Рассмотрим механизм процесса секреции органических кислот на примере выделения почкой ПАГ. При введении ПАГ в кровь человека ее выделение с мочой зависит от фильтрации в клубочках и секреции клетками канальцев. Когда секреция ПАГ достигает максимального уровня (ТmPAH), она становится постоянной и не зависит от содержания ПАГ в плазме крови. Механизм секреции органических кислот включает ряд этапов. В базальной плазматической мембране имеется Nа+-К+-АТФаза, которая удаляет из клетки ионы Nа+ и способствует поступлению в клетку ионов К+ Более низкая концентрация в цитоплазме ионов Nа+ позволяет поступать внутрь клетки ионам Nа+ по градиенту концентрации при участии натриевых транспортеров. Один из типов такого котранспортера способствует поступлению через базальную плазматическую мембрану а-кетоглутарата и Nа+. В этой же мембране имеется анионный обменник, который удаляет из цитоплазмы а-кетоглутарат в обмен на
поступающий из межклеточной жидкости в клетку парааминотгиппурат, диодраст или некоторые иные органические кислоты. Это вещество движется по клетке в сторону люминальной мембраны и через нее проходит в просвет канальца по механизму облегченной диффузии. Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования в присутствии динитрофенола снижают и прекращают секрецию. Уровень секреции зависит от числа переносчиков в мембране. Секреция ПАГ возрастает пропорционально увеличению концентрации ПАГ в крови до тех пор, пока вес молекулы персносчика не насыщаются ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, становится равным количеству молекул переносчика, которые могут образовывать комплекс с ПАГ.
Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и с помощью имеющегося в ней специального механизма выделяется в просвет канальца. Способность клеток почки к секреции органических кислот и оснований носит адаптивный характер. Если в течение нескольких дна часто инъецировать ПАГ (или пенициллин), то интенсивность секреции возрастает. Это обусловлено тем, что в клетках проксимальных канальцев при участии систем белкового синтеза вырабатываются вещества, являющихся необходимыми компонентами процесса переноса через мембрану органических веществ.
Подобно секреции органических кислот, секреция органических оснований (например, холин) происходит в проксимальном сегменте нефрона и характеризуется Тm. Системы секреции органических кислот и оснований функционируют независимо друг от друга, при угнетении секреции органических кислот секреция оснований не нарушается.
Транспорт в нефроне К+ характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При реабсорбции из просвета канальца К+ поступает в эпителиальную клетку, где концентрация К+ во много раз выше, чем в канальцевой жидкости, и К+ диффундирует из клетки через базальную плазматическую мембрану в тканевую интерстициальную жидкость, а затем уносится кровью. При секреции К+ поступает в клетку в обмен на Nа+ через эту же мембрану с помощью натрий-калиевого насоса, который удаляет Nа+ из клетки; тем самым поддерживается высокая внутриклеточная концентрация К+. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К+ мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К+ по градиенту концентрации может выходить из клетки. Скорость секреции К+ зависит от градиента электрохимического потенциала на этой мембране клетки: чем больше электроотрицательность апикальной мембраны, тем выше уровень секреции. При введении в кровь и поступлении в просвет канальца слабо реабсорбируемых атомов, например сульфатов, увеличивается секреция К+ Таким образом секреция К+ зависит от его внутриклеточной концентрации, проницаемости для К+ апикальной мембраны клетки и градиента электрохимического потенциала этой мембраны. При
дефиците К+ в организме клетки конечных отделов нефрона и собирательных трубок прекращают секрецию К+ и только реабсорбируют его из канальцевой жидкости. В этом случае К+ из просвета канальца транспортируется через апикальную плазматическую мембрану внутрь клетки, движется по цитоплазме в сторону основания клетки и через базальную плазматическую мембрану поступает в тканевую жидкость, а затем в кровь. Приведенные данные указывают на высокую пластичность клеток этих отделов канальцев, способных под влиянием регуляторных факторов перестраивать свою деятельность, изменяя направление транспорта К+, осуществляя то его реабсорбцию, то секрецию.
92. Осмотическое разведение и концентрирование мочи. Функционирование поворотно-противоточно-множительной системы.
Осмотическое разведение и концентрирование мочи
Способностью к осмотическому разведению мочи, т. е. способностью к выделению мочи с меньшей концентрацией осмотически активных веществ, а следовательно, с меньшим осмотическим давлением, чем плазма крови, обладают почки млекопитающих, птиц, рептилий, амфибий, пресноводных рыб и круглоротых. В то же время способностью к образованию мочи с большей концентрацией осмотически активных веществ, т. е. с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разгадать физиологический механизм этого процесса, но лишь в начале 50-х годов ХХ века была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи обусловлено деятельностью поворотно-противоточной множительной системы в почке.
Принцип противоточного обмена достаточно широко распространен в природе и используется в технике. Механизм работы такой системы рассмотрим на примере кровеносных сосудов в конечностях арктических животных. Во избежание больших потерь тепла кровь в параллельно расположенных артериях и венах конечностей течет таким образом, что теплая артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу (рис. 11.5, А). В стопу притекает артериальная кровь низкой температуры, что резко уменьшает теплоотдачу. Здесь такая система функционирует только как противоточный о6менник; в почке же она обладает множительным эффектом, т. е. увеличением эффекта, достигаемого в каждом из отдельных сегментов системы. Для лучшего понимания ее работы рассмотрим систему, состоящую из трех параллельно расположенных трубок (рис. 11.5, Б). Трубки I и II дугообразно соединены на одном из концов. Стенка, общая для обеих трубок, обладает способностью переносить ионы, но не пропускать воду. Когда в такую систему через вход I наливают раствор концентрации 300 мосмоль/л (рис. 11.5, Б, а) и он не течет, то через некоторое время в результате транспорта ионов в трубке I раствор станет гипотоническим, а в трубке II — гипертоническим. В том случае, когда жидкость течет по трубкам непрерывно, начинается концентрирование осмотически активных веществ (рис. 11.5, Б, б). Перепад их концентраций на каждом уровне трубки вследствие одиночного
эффекта транспорта ионов не превышает 200 мосмоль/л, однако по длине трубки происходит умножение одиночных эффектов, и система начинает работать как противоточная множительная. Так как по ходу движения жидкости из нее извлекаются не только ионы, но и некоторое количество воды, концентрация раствора все более повышается по мере приближения к изгибу петли. В отличие от трубок I и II в трубке III проницаемость стенок для воды: когда стенка становится водопронииасмой — начинает пропускать воду, объем жидкости в ней уменьшается. При этом вода идет в сторону большей осмотической концентрации в жидкость возле трубки, а соли остаются внутри трубки. В результате этого растет концентрация ионов в трубке III и уменьшается объем содержащейся в ней жидкости. Концентрация в ней веществ будет зависеть от ряда условий, в том числе работы противоточной множительной системы трубок I и II. Как будет ясно из последующего изложения, работа почечных канальцев в процессе осмотического концентрирования мочи похожа на описанную модель.
В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, напротив, осмотически концентрированную (осмотическое концентрирование) мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функционируют как поворотно-противоточная множительная система. Из 100 мл фильтрата, образовавшегося в клубочках, окало 60—70 мл реабсорбируется к концу проксимального сегмента. Концентрация осмотически активных веществ в оставшейся в канальцах жидкости такая же, как и в ультрафильтрате плазмы крови, хотя состав жидкости отличается от состава ультрафильтрата вследствие реабсорбции ряда веществ вместе с водой в проксимальном канальце (рис. 11.6). Далее канальцевая жидкость переходит из коркового вещества почки в мозговое, перемещаясь по петле нефрона до вершины мозгового вещества (где каналец изгибается на 180°), переходит в восходящий отдел петли и движется в направлении от мозгового к корковому веществу почки.
Функциональное значение различных отделов петли нефрона неоднозначно. Поступающая из проксимального канальца в тонкий нисходящий отдел петли нефрона жидкость попадает в зону почки. В интерстициально ткани которой концентрация осмотически активных веществ выше, чем в корковом веществе почки. Это повышение осмоляльной концентрации в наружной зоне мозгового вещества обусловлено деятельностью толстого восходящего отдела петли нефрона. Его стенка непроницаема для воды, а клетки транспортируют Cl-, Nа+ в интерстициальную ткань. Стенка нисходящего отдела петли проницаема для воды. Вода всасывается из просвета канальца в окружающую интерстициальную ткань по осмотическому градиенту, а осмотически активные вещества остаются в просвете канальца. Концентрация осмотически активных веществ в жидкости, поступающей из восходящего отдела петли в начальные отделы дистального извитого канальца, составляет уже около 200 мосмомь/кг Н2О, т. е. она ниже, чем в ультрафильтрате. Поступление Cl- и Nа+ в интерстициальную ткань мозгового вещества увеличивает концентрацию осматически
активных веществ (осмоляльная концентрация) межклеточной жидкости в этой зоне почки. На такую же величину растет и осмоляльная концентрация жидкости, находящейся в просвете нисходящего отдела петли. Это обусловлено тем, что через водопроницаемую стенку нисходящего отдела петли нефрона в интерстициальную ткань по осмотическому градиенту переходит вода, в то же время осмотически активные вещества остаются в просвете этого канальца.
Чем дальше от коркового вещества по длиннику почечного сосочка находится жидкость в нисходящем колене петли, тем выше се осмоляльная концентрация. Таким образом, в каждых соседних участках нисходящего отдела петли имеется лишь небольшое нарастание осмотического давления, но вдоль мозгового вещества почки осмоляльная концентрация жидкости в просвете канальца и в интерстициальной ткани постепенно растет от 300 ДО 1450 мосмоль/кг Н2О.
На вершине мозгового вещества почки осмоляльная концентрация жидкости в петле нефрона возрастает в несколько раз, а ее объем уменьшается. При дальнейшем движении жидкости по восходящему отделу петли нефрона, особенно в толстом восходящем отделе петли, продолжается реабсорбция Cl- и Nа+, вода же остается в просвете канальца. В начальные отделы дистального просвете канальца всегда — и при водном диурезе, и при антидиурезе — поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосмоль/кг Н2О.
При уменьшении мочеыделения (антидиурез), вызванном инъекцией АДГ или секрецией ДАГ нейрогипофизом при дефиците воды в организме. увеличивается проницаемость стенки конечных частей дистального сегмента (связующий каналец) и собирательных трубок для воды. Из гипотонической жидкости. находящейся в связvющем канальце и собирательной трубке коркового вещества почки, вода реабсорбируется по осмотическому градиенту, осмоляльная концентрация жидкости в этом отделе увеличивается до 300 мосмоль/кг Н2О, т. е. становится изоосмотичной крови в системном кровотоке и межклеточной жидкости коркового вещества почки. Концентрирование мочи продолжается в собирательных трубках; они проходят параллельно канальцам петли нефрона через мозговое вещество почки. Как отмечалось выше, в мозговом веществе почки постепенно возрастает осмоляльная концентрация жидкости и из мочи, находящейся в собирательных трубках, рсабсорбируетея вода; концентрация осмотически активных веществ в жидкости просвета канальца выравнивается с таковой в интерстициальной жидкости на вершине мозгового вещества. В условиях дефицита воды в организме усиливается секреция ДАГ, что увеличивает проницаемость стенок конечных частей дистального сегмента и собирательных трубок для воды.
В отличие от наружной зоны мозгового вещества почки, где повышение осмолярной концентрации основано главным образом на транспорте Nа+ и Cl-, во внутреннем мозговом веществе почки это повышение обусловлено участием ряда веществ, среди которых важнейшее значение имеет мочевина — ддя нее стенки проксимального канальца проницаемы. В проксимальном канальце реабсорбируется до 50%
профильтровавшейся мочевины, однако в начале дистального канальца количество мочевины несколько больше, чем количество мочевины, поступившей с фильтратом. Оказалось, что имеется система внутрипочечного кругооборота мочевины, которая участвует в осмотическом концентрировании мочи. При антидиурезе ДАГ увеличивает проницаемость собирательных трубок мозгового вещества почки не только для воды, но и для мочевины. В просвете собирательных трубок вследствие реабсорбции воды повышается концентрация мочевины. Когда проницаемость канальцевой стенки для мочевины увеличивается, она диффундирует в мозговое вещество почки. Мочевина проникает в просвет прямого сосуда и тонкого отдела петли нефрона. Поднимаясь по направлению к корковому веществу почки по прямому сосуду, мочевина непрерывно участвует в противоточном обмене, диффундирует в нисходящий отдел прямого сосуда и нисходящую часть петли нефрона. Постоянное поступление во внутреннее мозговое вещество мочевины, Nа+ и Cl-, реабсорбируемых клетками тонкого восходящего отдела легли нефрона и собирательных трубок, удержание этих веществ благодаря деятельности пропротивоточной системы прямых сосудов и петель нефрона обеспечивают повышение концентрации осмотически активных веществ во внеклеточной жидкости во внутреннем мозговом веществе почки. Вслед за увеличением осмоляльной концентрации окружающей собирательную трубку интерстициальной жидкости возрастает реабсорбция воды из нее и повышается эффективность осморегулирующей функции почки. Эти данные об изменении проницаемости канальцевой стенки для мочевины позволяют понять, почему очищение от мочевины уменьшается при снижении мочеотделения.
Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют противоточную систему. Благодаря такому расположению прямых сосудов обеспечивается эффективное кровоснабжение мозгового вещества почки, но не происходит вымывания из крови осмотически активных веществ, поскольку при прохождении крови по прямым сосудам наблюдаются такие же изменения ее осмотической концентрации, как и в тонком нисходящем отделе петли нефрона. При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней постепенно возрастает, а во время обратного движения крови к корковому веществу соли и другие вещества, диффундирующие через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки и прямые сосуды функционируют как противоточная система. Скорость движения крови по прямым сосудам определяет количество удаляемых из мозгового вещества солей и мочевины и отток реабсорбируемой воды.
В случае водного диуреза функции почек отличаются от описанной ранее картины. Проксимальная реабсорбция не изменяется, в дистальный сегмент нефрона поступает такое же количество жидкости, как и при антидиурезе. Осмоляльностъ мозгового вещества почки при водном диурезе в 3 раза меньше, чем на максимуме антидиуреза, а осмотическая концентрация жидкости, поступающей в дистальный сегмент нефрона. такая же — приблизительно 200 мосмоль/кг Н2О. При водном диурезе стенка
