Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
12
Добавлен:
17.03.2015
Размер:
141.45 Кб
Скачать

 

BiCGScattering-FFTSolutionT-MatrixfromMethodInhomogeneousfor Solving Bodiesfor the

 

 

 

 

 

 

 

 

J. H. Lin and W. C. Chew

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electromagnetics Labora

 

 

 

 

 

 

 

 

 

 

 

 

Department of Electrical and Computetor Engineering

 

 

 

 

 

 

 

 

University of Illinois

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Urbana, IL 61801

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract

 

 

 

 

 

 

 

ciently solv

three

A BiCG-FFT T-Matrix algorithm is prop sed to

 

 

 

 

scattering problems of inhomogene us bodi

 

 

. The memory stor-

dimensionalbo of various size

are shown.

 

It is also

demonstrated

that the matrix

condition

umber for ne grids is

the same as that for

coarse grids.

 

 

ge is of

 

(

 

) (N is the

umber of unknowns) and

each iteration in BiCG

requires

O(Nlog N) operations. A go d agr emen

between the numerical

xact solutions is observed. T

 

 

converg nce

 

rate

 

f

 

lossless and lossy

1. Introduction

 

 

 

 

 

c elds

 

y

 

 

 

 

 

 

 

 

 

bodies is a

T

scattering of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

researcmethod of solving thelectromagnetinho oge eous body probleminhomogeneousby app ximating th

 

topic that nds applicatio

 

 

n man

 

elds. In this paper, w

 

 

 

 

 

 

bo y with

all

diel

ctric

cubes.

 

The dielectric cubespropose

then approximated by equivolume spheres [1-4]. In this

 

 

 

nner, the T matrix

[5,6] of eac

 

individual phere can be found in closed form. A set of

linear

inhomogeneousalgebraicrom ea of the spheres. By

using

 

T-ma rix

 

 

 

 

 

 

 

theamplitudesGreen'

method of moments, suc

easilysingularity has to be handled with c ution [7-9].

 

equations can

 

 

deriv

to solv for the scat ering

 

 

 

function singularity problem is

voided, while other form

 

 

s, such as

When the inhomogeneous

body thisdiscre ized

into ulation

ar grid,

res ltant equation has

 

block-Toeplitz structure.

An iterativ

 

solver suc

as BiCG (bi-c njugate

gradient) method [10,11]

 

 

be

 

 

 

to solve

is us d,

solution of the matrix equati

iteratively. Whencan iterativregulsolv

the main

 

 

 

of seeking the olution is the cost of performing mat ix-vec or

N is the total

m

of

spheres involved.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ultiplicati

 

. Exploiting the block-Toeplitz structure,usedw can peerform

90,000 unkn wns issholved on a Sparc 10 w

 

 

 

 

 

 

storage. I is shown

matrix-vectcostr

ltiplication in O(N

 

 

g N) operations b

 

FFT [7-9,12], wherthe

The

method can be

wn to require O(N) memory

 

 

 

. He

ce, it

can be u ed to s lvber fairly large

problems.

 

A volume

 

 

ering problem

because the matrix condition number for the formerorkstationcases scatsmaller than

withr tive

solvers converge faster for lossy bodies

 

an los less ones.

This is

for the latter ones, as a lossle

 

 

 

 

could hav

high

 

Q inte nal

 

 

modesA. the simulation results shobodyw, y using

the

T-

 

 

 

 

 

formulation,resonancethat

condition number of the resultant matrix is independenmatrixof the mesh size of

File:bicg tt.tex, Date:January 4, 1995

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bodya

is gridded. Thnerefore,in orderthetoumbachievr ofbetteriterationsresolutiondoes not.

 

grow when the

2.uniformF ulation and Impl

mentation

 

 

 

 

 

 

 

 

 

 

 

 

uniform array, their scat-

When

 

 

umber of scatt rers are

 

placed on

 

 

 

 

tering solution

can be

obtained

 

e ciently by using FFT and an ite ativ

as The total

eld due to an

 

 

y of non-iden

 

 

 

 

 

 

 

scatterers can be written

method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

(karra;

 

 

 

 

 

 

 

 

 

 

 

 

X tical

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E(r) =

 

 

 

)

 

 

 

 

+

 

N

 

 

 

 

 

(k ;

 

 

) b ;

 

 

 

 

(1)

 

i

=

 

?

0 and r0 is the location

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

center of the

-th

 

 

 

of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

s

 

 

 

 

 

s

 

 

 

 

 

=1

 

 

 

 

 

scatteringspherical

 

wherescatt rer. (k0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

or

 

 

 

 

 

 

 

 

) is a row vector containing the v

 

 

 

 

cident eld while

from

each

 

 

 

 

 

 

 

. The rst term in (1) comprises the

 

 

 

-scattererterer respe tively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the second term

i

 

the

i

 

 

 

 

 

 

 

eld.

 

 

The vectors

 

 

 

 

and b

contain

 

is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tra slati

n

matrix

[4,13]scattereto hanged

 

 

he

coordinates of all the sphericalharmonics-

ampli udes of the inciden

 

eld harmonics and the scattered

 

eld

 

monicsocusthe

that of the j-th

 

 

 

 

 

 

 

 

 

to obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

ing on

 

 

 

j-th

 

 

 

erer, w

 

 

 

can use the addition theorem or the

 

 

 

E(r) = <g

 

 

t

(k ;scatterer) a

 

 

 

 

 

<g

 

 

t

(k ; r )

 

N

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

j

 

 

js

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

j

 

 

X

 

ji

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(k ; r

) b

 

 

 

 

 

 

 

(2)

Looking at the above, w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:i=6 j

 

 

 

 

 

 

 

that the

 

 

 

 

 

 

 

0woj

 

 

 

 

 

j

 

 

 

are inciden w v

impinging on the j-th

 

Therefore,

 

 

 

 

 

 

 

 

 

the third termsis the

scattered

eld

o the j-th scatterer.

 

the amplitude

of the third term must be

T matrix of

 

he j-th

 

scatterer,

 

. .,

 

T

 

 

 

 

.

 

Here,

 

T

 

 

 

 

is diagonalscattererfor th

related to the total amplitude of the rst

 

worst terms via the isolated

 

spherical

scatterer. Consequently,whilehave

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

j(1)

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

= T

 

 

 

 

 

 

 

a

 

+

X

 

 

 

 

b

 

;

 

 

 

j = 1; ; N:

 

(3)

 

 

 

 

j

 

 

 

 

4

js

s

 

 

 

 

 

 

ji

 

i5

 

 

 

 

 

 

 

 

 

 

 

 

 

j(1)

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Essentially, we

 

 

 

h the

 

 

 

 

 

 

 

 

 

i=6 j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

condition at the surface of the j-th scat-

Equation (3) could beboundarewritteny

as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

terer inst ad atmtheatcenter of the scatterer. This explains why this formulation

avoids the singularity probl m.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bj

? Tj(1)

X

ji

bi

=

j(1)

 

 

js as

 

 

 

 

(4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i=6 j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

B ?

T

A B =

T

S;

 

 

 

 

 

 

 

 

(5)

where

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T and

are block matrices, and B and

S are block vectors whose

 

block elements are given by

 

 

 

 

 

T

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

a)

 

 

 

 

 

 

 

 

 

 

 

 

 

T]

 

 

 

=

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A]

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

(6b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

(6d)

 

 

 

 

 

 

 

 

 

 

 

 

 

[S]jij= js

 

s:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B]

 

 

 

 

 

 

;

 

if j =6

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= b ;0;

 

 

 

otherwise;

 

 

 

 

 

 

 

 

 

 

 

 

(5) can be s lved w th iterative methods lik

the bi-conjugate gradi-

be in the matrix-vector m

 

 

 

 

 

 

 

 

 

 

 

A Bmajor. F a dense

 

rix, the cost of

suc

 

 

matrix-vector multipl plicationrequires O(N

2Mcomputational2) oper ions, where

 

M

Eisquationh dimension of the

 

 

matrices.

 

 

 

 

 

 

 

 

 

 

 

 

cost

ould

en (BiCG) method. In such

 

 

me hod, the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

grid, then

 

=

 

When the scattering centers are

 

 

 

 

 

 

 

 

 

 

 

(r ?rj ). The translation matrix is onlyplacedfunction ofiform?rj . When the for-

 

0

lock, the block-Toeplitz summationatrix is convertedEquation

Toeplitz-block matrix

 

 

0

 

 

 

 

 

 

 

 

 

 

sum

 

 

 

 

 

 

. I

 

such

 

 

 

0

 

0

 

 

ij

 

 

withulation

is imple

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

can be expressed as

m

 

 

 

 

 

ted, the

 

 

 

 

 

 

 

 

 

 

in

 

 

 

(4) is actually replaced

a block-Toeplitzdimensionalatrix. By grouping the elemencase,of same harmonics into

one(i. . eacthreeblock is T

 

 

 

 

 

. Then the fast Fourier tr

sform (FFT) meth

 

an be used to expedite the matrix-v

 

 

 

 

multiplication A B with operati n

count of O(NM logoeplitz)N .

 

 

 

 

 

 

 

 

ector , it possesses only electric dipole

 

If the

 

 

 

 

a

small c

 

 

 

 

 

matrix spheresdurthermto

orreo at onmparedsymmetry.

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

. Note th

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

circulan

matrixTherefore,in the x-

 

 

 

 

 

A has be n extended

 

 

oments whic cor

spond

 

 

 

the rst

 

hree harmonics in T .

 

the

 

In order to perform the

 

matrix-v

 

 

 

multipli

ation more e ciently

M = 3 and f

 

 

 

 

 

here

 

 

 

only 6 independen

ele

 

j(1)

 

 

 

 

 

 

 

 

 

 

 

 

ents in the 3 by 3

pr venstoredaliasing. Henc ,

 

 

 

 

 

nevcalculaer

matrix-vector m

 

 

 

 

is required

 

 

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to

y- and z-directions and zeros have ectorbe padded to the original vect

 

 

Fourier transform of

 

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

only once outside the iteration loop

A, A is

 

 

 

 

 

 

 

 

 

 

each

 

 

 

 

 

 

 

 

forward 3D-FFT correspondingultiplicationth ee

harmonics

nd nallyiterthation,ee inverse

3D-FFT are

carried

out. Then

the product can be

obtained

 

b disca ding thos

 

 

entries with zero-padding in the rst place.

 

 

re rst perfo med,thre

 

 

 

th y are multipli

 

~

the frequency domain

 

 

 

by A

 

The

memory requiremen

 

of the method is still O(N) since each block

matrix in A can be represented

by one of its rows or columns.

 

 

 

 

3. Results and Conclusions

 

 

both in Figure 1 for a dielectric layered

 

A good agreement is observ

 

 

sphere and in Figure 2 for a

dielectric3cube [9]. It converges in 53 iterations

workstationfor theShowncaseinworkinFiguregureng in3

1aredoubleandthetakprumbercisionabout.of

1

21 hourstions CPUvs. thetimeumberon Sparcof un10-

knowns for

ssl ss and lossy objects. As witehrave

 

 

 

 

 

in 2D cases [14],

t

 

 

 

 

 

ber of iterations

 

 

 

 

with the size of

 

object

 

in the

 

medium. T

 

shows thatincreaseshe lossy medium, theobservcomp

x permittivitlossy

 

igin.

 

, less number of

 

 

 

 

is required to con

rge than in the

 

 

 

 

Physically, the resiterationsan freque

 

cies of the lossy

dielectric body ar

 

 

The

 

umber of

 

 

 

 

is approximately proportional to N forlossless

sh fts the ot

erwise small eigenv

 

 

 

the lossless medium

way from

 

 

 

 

 

 

 

 

while

in

practice,

thealuesating

frequency

 

is

alwandys

real,

whicthe

complex,fav able, a sui able precondi ionerdistributioneed d.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ludes the eigenv

 

from being too close to zero.

 

 

 

 

 

 

 

 

 

already poor conditioniterationsumber. In order for BiCG-FFTalgorithmitslargelik to be morthe

pr

 

 

nditioners, the aluesgenvalue

 

0:75

 

 

 

seemones dispersive

 

 

 

con ne-

less

 

 

bjects and se m ngly to N

for lossy

 

 

when N is

 

. Without

men

 

as N grows and the erratic converge ce of BiCG

 

 

 

 

withoutrsens

 

matrixshow

 

at theulationumber of

iterations

 

 

 

 

as 6 for the c ses

f 8 8 8,

 

 

 

 

 

form

e

 

is still stable. The rstthexample is a homogeneous thedi lec-

 

 

Finally,

 

 

 

 

hat

when

 

 

object is gridded ner,

 

 

T

agrees very

ll demonstrate

 

 

 

 

 

. W

hav

 

also

 

 

a second ex mple

tric sp

 

ere

 

 

= 4:0 and he rad

 

= 10?5

. The simulation results

(not

sho

 

ere)withich is

hom

geneous

d electric

 

 

 

withresults= 9:0 and

the side lewng

=0:34 . Similarsolutionthe rst example, therunumber of iterations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

nd it

16 16 16 and 32 32 32 grids. remainsF 4 shows one of the

 

 

is 16 for all withe three di erenexactgrids as mentioned abovcube.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

References1] sectionJ. H Richmond,hape," IEEE\ScatteringT ans. AyntennasdielectricPropagatcylinder., vol.of13,arbitrarypp. 334cross-341,

 

arb

 

 

shaped bi logical

bodies," IEEE T ans. Microwav

The ry

 

dosimet

 

and scattering computation\Electromagneticof tor electromagnetic

elds,"

2]

1965

esay and K. M. Chen,

 

 

 

elds induc

inside

D. E.

 

 

 

3]

T. C.Guo, W. W. Guo and H. N. Oguz, \A

 

 

hnique for three-dimensional

 

IEEEtrarilyT

 

.

 

 

 

 

 

, vol. 29, no. 2, pp. 1636-1641, 1993.

 

 

4]

ch , Livol. 22, no. 12, pp. 1273-1280, 1974.

of T-matrix approach for

Y. M. W g and W. C. Chew, \ A

recursiv

5]

Antennas

 

 

opMagneticsga . vol

41, no. 12, pp. 1633-1639, 1993.

scattering,"

. C. WatePrman, \Matrix formulation

f

electromagnetic

 

the solutioansof elec romagnetic scattering by many spheres," IEEE T ans.

6

Pr c. IEEE

 

vol.

53, pp. 805-811, 1965.

 

 

 

 

 

 

W. C. Chew,

Waves and Fields in Inhomogeneous Media , Van N

 

 

[7]

Reinhold,

 

New Y

 

1990.

\Fast-F

 

 

ransf rm meth d fstrandthe

D. T. Borup and O. P.

 

 

 

 

 

calculation of SAR distributiGandhi, in nelyourierdisc tized

of biological

[8]

bodies," IEEE Tork, .

 

 

owave Theory Tech., vmodels. 32,

no.

4,

pp.

C. Y. Shen, K. J. Glover,Micr. I. Sancer and A. D. Varv

\ The dis-

 

crete Fourier

transform

method of solving di erential-in

equations

 

355-360, 1984.

 

 

 

 

 

 

rans. Antennas Propagat.atsis,vol. 37, no. 8,

 

in scattering theory," IEEE

 

pp. 1032-1041, 1989.

 

 

 

 

 

 

 

 

weak form

[9] P. Zwamborn and P. M. van den Berg, \The three-dimensio

 

of the conjugate g adient

FFT method for solving scatteritegraln problems,"

0]

IEEE T ans.

 

Micr

 

 

Theory T ch., vol.

40, no. 9, pp.

1757-1766,

R. Fletcher,

\Co

jugate gradien methods f

 

inde nite systems,"

 

Nu

 

erical Analysis Dundowave

1975, G.

. Watson, Ed. pp. 73-89, Springer-

 

1992.

 

 

 

 

 

 

 

 

 

 

of the generalized bi-conjugate gradien

 

T. K. Sarkar, \On the

 

 

 

 

ducting plates of

esonanapplicationsize using

the conjugate-gradien

meth

and

 

method,"

J. Ele

 

omagn.

 

Appl., vol. 1, no. 3, pp. 223-

1987.

[11]2

Verlag, New York, 1976.

 

 

 

 

 

 

 

 

 

M. F. Catedra,

J. G. CuevasWavesd L. Nu~no, \A scheme of analyze con-

 

recursivChew,aggregate T-matrix algorithm,"

in IEEE Antennas andadditionProp -

 

 

fast Fourierctransform," IEEE T ans. Antennas Propagat.242,vol. 36,

 

theory," J. Electromagn. Waves Appl. vol. 6, no. 2, pp. 133-142, 1992.

 

no

12, pp. 1744-1752, 1988.

 

 

 

 

 

 

 

 

[13]4

W.

C.

 

 

 

\Recurrence relation for three dimensional scalar

 

 

J. H. Lin and W. C. Chew, \A comparison of the CG-FFT method and the

 

gation Society International Symposium Digest, pp. 1591-1594, 1992.

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

b

a

Bi−RCS of a dielectric layered sphere

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

(dB)

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bi−RCS

5

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−20

0

20

 

40

60

 

80

 

100

120

140

160

180

 

 

 

 

 

 

 

Figure 1. The Bi-RCS of a

 

theta layered scatterer. The solid

is

 

 

from the Mie series solution; the dash line is the numerical solution. lineH re,

 

 

b = 0:5

;

r1

= 1:2; a = 1:0

0

and

= 2:4. A 30 30 30 grid is used.

 

 

 

 

0

 

 

 

spherically2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

= 0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

−5

 

 

 

 

 

 

 

 

 

 

−10

 

 

 

 

 

 

 

 

 

 

dB −15

 

 

 

 

 

 

 

 

 

 

−20

 

 

 

 

 

 

 

 

 

 

−25

 

 

 

 

 

 

 

 

 

 

−30

20

40

60

80

100

 

120

140

160

180

0

 

 

 

 

 

theta (deg.)

 

 

 

 

 

 

(a) The far eld kE k as a function of

 

 

 

 

 

= 90

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

−1

 

 

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

 

 

−3

 

 

 

 

 

 

 

 

 

 

dB

 

 

 

 

 

 

 

 

 

 

−4

 

 

 

 

 

 

 

 

 

 

−5

 

 

 

 

 

 

 

 

 

 

−6

 

 

 

 

 

 

 

 

 

 

−7

20

40

 

80

100

 

120

140

160

180

0

 

 

 

 

 

 

the

( eg.)

 

 

 

 

 

 

(b) The far eld kE k as a function of

 

Figure 2. The far elds as a function of

 

 

for a lossless dielectric

cube with r = 9

 

k0

= 60:628319: T

solid

 

 

 

the BiCG-FFT T-matrix method and the symbols represent the results by

Zwamborn and vandden Berg. A 7 7 7 gridcomputedislinesed.

 

 

 

 

 

 

7

 

 

 

 

 

number of iterations

102

 

 

 

 

 

 

 

 

Lossless medium

 

 

 

 

 

 

 

 

 

 

 

 

Lossy medium

 

 

101

 

 

 

 

 

 

102

 

 

103

104

105

 

Figure 3. The

um

number of unknowns

 

 

of iterations vs. number of unknowns for lossless

 

cubes of r

= 9:0 and berfo

lossy cubes of r

= 9:0 + i3:0.

 

8

Bi−RCS of a dielectric sphere

 

−260

 

 

 

 

 

 

 

 

 

−280

 

 

 

 

 

 

 

 

 

−300

 

 

 

 

 

 

 

 

 

−320

 

 

 

 

 

 

 

 

(dB)

 

 

 

 

 

 

 

 

 

Bi−RCS

−340

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−360

 

 

 

 

 

 

 

 

 

−380

 

 

 

 

 

 

 

 

 

−400

 

 

 

 

 

 

 

 

 

−420

 

 

30

60

90

120

150

180

 

 

 

 

 

 

 

 

 

 

theta

 

 

 

 

Figure 4. The Bi-RCS of a dielectric sphere. The solid line is from the Mie

 

series solution; the dash line is the numerical solution. Here, the radius =

 

 

?5

0

and r = 4:0. A 16 16 16 gird is used.

 

 

 

 

10

 

 

 

 

 

 

 

 

 

9

 

 

 

Соседние файлы в папке Метод Т-матриц