Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Метод Т-матриц / Wriedt-superellipsoids-PartPartSystCharact-2002

.pdf
Скачиваний:
14
Добавлен:
17.03.2015
Размер:
262.63 Кб
Скачать

266

Part. Part. Syst. Charact. 19 (2002) 256 ± 268

Fig. 20: Shape of smooth (left) and rough (right) particles.

Fig. 21: Oriention-averaged differential scattering cross-section of smooth and rough particles, 1728 orientations, Nmax $ 20 Mmax $ 17, 20480 faces, M $ 1 5 $ 628 31 nm

6 Conclusions

An efficient way for computing scattering by nonaxisymmetric particles in the framework of the null-field method with discrete sources has been presented. The superellipsoid has been introduced to represent a wide range of realistic particle shapes. Additionally, reading a triangular surface patch model of a scattering particle has been implemented in the computational procedure.

Numerical experiments have been performed for superellipsoids representing a rounded dielectric cube and some realistically shaped particles. It has been demonstrated that this method is very well suited to compute the T-matrix for non-axisymmetric particles with an overall dimension of 4 m with a desktop computer. A Windows 9X program including graphical user interface for computing scattering by a superellipsoid is available from our web site [51].

The program has mainly been developed to investigate the effect of particle shape with various kind of methods and instruments in optical particle characterization such as intensity-based optical particle counters, intensity ratioing technique, visibility technique, phase Doppler anemometry, diffraction type of instruments, static light scattering, etc.

7 Appendix

The block elements of matrices A B and A0 are given by

 

 

 

 

 

A11

$ S

n 1

12

 

1

A

$ S

n

21

 

1

A

$ S

n

22

 

1

A

$ S

n

 

 

 

3 # M n 1 3

dS

 

3 # M n 1 3 dS

28

 

3 #

 

 

1

3

dS

! "

 

3

M n

 

1

3

 

 

 

 

 

 

 

 

# M n dS

B11 $ jk2s

S

B12 $ jk2s

S

B21 $ jk2s

S

B22 $ jk2s

S

n 1 N 1 # M n 1

n 1 N 1 # M n 1

n 1 M 1 # M n 1

n 1 M 1 # M n 1

M 1 dS

M 1 dS

!29"

N 1 dS

N 1 dS

A011

$ S

n M1 3 # n N1 3 dS

 

12

 

1

3

1

 

3

dS

 

A0

$ S

n N

 

# n M

 

30

21

 

1

3

1

 

 

3

dS

! "

A0

$ S

n M

 

# n N

 

22

 

1

3

1

 

 

3

dS

 

A0

$ S

n N

 

# n M

 

 

 

 

 

 

 

 

 

 

 

 

respectively. Here, M is the refractive index and is given

by M

$

i s

 

 

8 Acknowledgement

We acknowledge support of this work by the Deutsche Forschungsgemeinschaft (DFG).

9 Symbols and Abbreviations

a, b, c

bounds in x, y, z of the superellipsoid

!a0 b0"

expansion coefficients of the incident

 

field

Dmn

normalization constant

enorth-south roundedness of superellip-

 

 

 

soid

E0 Es

incident and scattered fields

!

0

"0

surface current densities

 

e h

 

!f g "

expansion coefficients of the scattered field

kwavenumber

Mmn1 3 Nmn1 3

localized vector spherical functions

 

1 3

1 3

distributed vector spherical functions

mn

mn

Part. Part. Syst. Charact. 19 (2002) 256 ± 268

267

1ni3 1ni31n 3 1n 3

M

n S

%T&

!x y z" x

n !x"

! "

0

vi

CAD

DDA

DSCS

DOS

DSM

FDTD FORTRAN MMP POV-Ray T-matrix VIEM VRML

magnetic and electric dipoles

vector Mie potentials

refractive index

east-west roundedness of superellipsoid particle surface

transition matrix cartesian coordinate position vector Green function Euler angles angular coordinates permittivity

wavelength in vacuum permeability

vertex points on particle surface

computer aided design discrete dipole approximation

differential scattering cross section disk operating system

discrete sources method finite difference time domain formular translator

multiple multipole program persistance of vision raytracer transition matrix

volume integral equation method virtual reality modelling language

10References

[1]T. Wriedt: A review of elastic light scattering theories. Part. Part. Syst. Charact. 15 (1998) 67 ± 74.

[2]A. R. Jones: Light scattering for particle characterization. Progress in Energy and Combustion Science 25 (1999) 1 ± 53.

[3]B. T. Draine, P. J. Flatau: Discrete-dipole approximation for scattering calculations. Optical Society of America: J. Opt. Soc. Am./A. 11 (1994) 1491 ± 1499.

[4]D.-P. Lin, H.-Y. Chen: Volume integral equation solution of

extinction cross section by raindrops in the range 0.6 ± 100 GHz. IEEE Transactions on Antennas and Propagation.

49 (2001) 494 ± 499.

[5]W. Sun, Q. Fu, Z. Chen: Finite-difference time-domain solution of light-scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt. 38 (1999) 3141 ± 3151.

[6]P. Yang, K. N. Liou, M. I. Mishchenko, B.-C. Gao: Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. App. Opt. 39 (2000) 3727 ± 3737.

[7]P. W. Barber and S. C. Hill: Light Scattering by Particles: Computational Methods (World Scientific, Singapore,1990).

[8]M. I. Mishchenko, L. D. Travis: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quantitative Spectroscopy & Radiative Transfer. 60 (1998) 309 ± 324.

[9]P. C. Waterman: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45 (1969) 1417 ± 1429.

[10]P. C. Waterman: Symmetry, unitarity and geometry in electromagnetic scattering. Phys. Review D 3 (1971) 825 ± 839.

[11]P. C. Waterman: Matrix formulation of electromagnetic scattering. Proc. IEEE 53 (1965) 805 ± 812.

[12]M. I. Mishchenko: Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A 8 (1991) 871 ± 882.

[13]B. Peterson, S. Strˆm: T-matrix for electromagnetic scattering from an arbitrary number of scatterers. Phys. Rev. D 8 (1973) 3661 ± 3678.

[14]D. W. Mackowski: Calculations of total cross sections of multiple-sphere clusters. J. Opt. Soc. Am. A 11 (1994) 2851 ± 2861.

[15]D. Ngo, G. Videen, P. Chylek: A Fortran code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion. Computer Physics Communications 99 (1996) 94 ± 112.

[16]G. Videen, D. Ngo, P. Chylek, R. G. Pinnick: Light scattering from a sphere with an irregular inclusion. J. Opt. Soc. Am. A 12 (1995) 922 ± 928.

[17]Wenxin Zheng: The null-field approach to electromagnetic scattering from composite objects: the case with three or more constituents. IEEE Trans. Antennas and Propagation 36 (1988) 1396 ± 1400.

[18]T. Wriedt, A. Doicu: Light scattering from a particle on or near a surface. Optics Communications 152 (1998) 376 ± 384.

[19]A. Bostrˆm: Scattering of acoustic waves by a layered elastic obstacle immersed in a fluid: an improved null-field approach. J. Acoust. Soc. Am. 76 (1984) 588 ± 593.

[20]M. F. Iskander, A. Lakhtakia, C. H. Durney: A new procedure for improving the solution stability and extending the frequency range of the EBCM. IEEE Trans. Antennas Propag. AP-31 (1983) 317 ± 324.

[21]M. F. Iskander, A. Lakhtakia: Extension of the iterative EBCM to calculate scattering by low-loss or loss-less elongated dielectric objects. Appl. Opt. 23 (1984) 948 ± 953.

[22]R. H. T. Bates, D. J. N. Wall: Null field approach to scalar diffraction: I General method; II Approximate methods; III Inverse methods. Phil. Trans. Roy. Soc. London A 287 (1977) 45 ± 117.

[23]A. Lakhtakia, M. F. Iskander, C. H. Durney: An iterative EBCM for solving the absorbtion characteristics of lossy dielectric objects of large aspect ratios. IEEE Trans. Microwave Theory Tech. MTT-31 (1983) 640 ± 647.

[24]R. H. Hackman: The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates. J. Acoust. Soc. Am. 75 (1984) 35 ± 45.

[25]F. M. Schulz, K. Stamnes, J. J. Stamnes: Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the T-Matix computed in spheroidal coordinates. Appl. Opt. 37 (1998) 7875 ± 7896.

[26]A. Doicu, T. Wriedt: EBCM with multipole sources located in the complex plane. Optics Communications 139 (1997) 85 ±98.

[27]T. Wriedt, A. Doicu: Formulations of the EBCM for threedimensional scattering using the method of discrete sources. J. Modern Opt. 45 (1998) 199 ± 213.

[28]A. Doicu, Y. Eremin, T. Wriedt: Acoustic and Electromagnetic Scattering Analysis using Discrete Sources. Academic Press, San Diego 2000.

[29]A. Doicu, T. Wriedt: Extended boundary condition method with multipole sources located in the complex plane. Optics Commun. 139 (1997) 85 ± 98.

268

Part. Part. Syst. Charact. 19 (2002) 256 ± 268

[30]A. Doicu, T. Wriedt: Null-field method with discrete sources to electromagnetic scattering from layered scatterers. Comput. Phys. Commun. 138 (2001) 136 ± 142.

[31]A. Doicu, T. Wriedt: Calculation of the T-matrix in the nullfield method with discrete sources. J. Opt. Soc. Am. A 16 (1999) 2539 ± 2544.

[32]P. W. Barber: Differential scattering of electromagnetic waves by homogeneous isotropic dielectric bodies. Ph. D. Thesis, University of California, Los Angeles 1973

[33]J. B. Schneider, I. C. Peden: Differential cross section of a dielectric ellipsoid by the T-Matrix extended boundary condition method. IEEE Trans. Antennas Propagat. AP 36 (1978) 1317 ± 1321.

[34]T. Wriedt, A. Doicu: Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources. J. Modern Optics 45 (1998) 199 ± 214.

[35]T. Wriedt, U. Comberg: Comparison of computational scattering methods. J. Quant. Spectrosc. Radiat. Transfer 60 (1998) 411 ± 423.

[36]H. Laitinen, K. Lumme: T-Matrix method for general starshaped particles: first results. J. Quant. Spectrosc. Radiat. Transfer 60 (1998) 325 ± 334.

[37]F. M. Kahnert, J. J. Stamnes, K. Stamnes: Application of the extended boundary condition method to particles with sharp edges: a comparison of two surface integration approaches. Applied Optics 40 (2001) 3101 ± 3109.

[38]S. Havemann, A. J. Baran: Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders. J. Quant. Spectrosc. Radiat. Transfer 70 (2001) 139 ± 158.

[39]I. D. Faux, M. J. Pratt: Computational Geometry for Design and Manufacture. Wiley, Chichester 1979

[40]A. Jaklic, A. Leonardis, F. Solina: Segmentation and Recovery of Superquadratics. Kluwer Academic, Dordrecht 2000.

[41]C. M¸ller: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag, New York, 1969.

[42]J. Bloomenthal (ed.): Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco, 1997.

[43]A. Pasko: Function representation and HyperFun project. In T. L. Kunii (Ed.): Proceedings of the 17th Spring Conference on Computer Graphics, 25th ± 28th April, 2001, Budmerice, Slovakia.

[44]HyperFun Project: Language and Software for F-rep Modeling, URL: http://www.hyperfun.org.

[45]A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko: Function representation in geometric modeling: concepts, implementation and applications. The Visual Computer 11 (1995) 429 ±446.

[46]K. Georg, J. Tausch: Some error estimares for the numerical approximation of surface integrals. Math. Comput. 62 (1994) 755 ± 763.

[47]Ch. Hafner, L. Bomholt: The 3D Electromagnetic Wave Simulator, 3D MMP Software and User×s Guide. Wiley, Chichester 1993.

[48]S. Hudson: The Earth-Crossing Asteroid 1998 KY26. http:// www.eecs.wsu.edu/~hudson/Research/Asteroids/ky26/

[49]R. Cipolla, P. Giblin: Visual Motion of Curves and Surfaces. Cambridge University Press, Cambridge 2000.

[50]POV ROCK gen 1.0. http://www.iro.umontreal.ca/~pigeon/ povpage/rockgen/rockgen.html.

[51]SScaTT (Superellipsoid Scattering Tool) in T. Wriedt: Electromagnetic scattering programs. http://www.t-matrix.de.

Соседние файлы в папке Метод Т-матриц