
задания по философии 2013 / 11 парадокс лжеца
.docx
Материалы к теме «Парадокс лжеца»
***
Парадоксы известны с незапамятных времен. Знаменитому критскому философу Эпимениду, жившему в VI веке до нашей эры, приписывается довольно нелестный отзыв о своих соотечественниках: “Все критяне — лжецы”. Только вот беда: сам Эпименид тоже критянин! Получается, что если Эпименид говорит правду, то он лжец, значит, он возводит напраслину на своих земляков и на себя самого, то есть говорит неправду. Как же все-таки: ложно или истинно высказывание, порочащее обитателей острова — колыбели человеческой культуры?
Парадокс Эпименида, известный иначе как “парадокс лжеца”, встречается еще и в менее афористической, зато более сильной форме: “я лгу”, или “высказывание, которое я сейчас произношу, ложно”. Стоящее в кавычках выражение, очевидно, не может быть без противоречия ни истинным, ни ложным. Этот вариант парадокса принадлежит Эвбулиду (IV век до н. э.).
В 1913 году английский математик Джордан добавил в копилку парадоксов такой На одной стороне карточки начертано: “Утверждение на обороте этой карточки истинно”. Что же это за утверждение? Перевернув карточку, вы читаете: “Утверждение на обороте этой карточки ложно”. Вот и поди разберись, что к чему. Если верить первому сообщению, то второе правильно. Но ежели правильно второе, то неверно первое! И наоборот.
***
Под парадоксом обычно понимают нечто противоречащее нашей интуиции, нашему повседневному опыту, нашим непосредственным ощущениям. Парадоксальным в этом смысле казалось откровение астрономов-гелиоцентристов: не Солнце вращается вокруг Земли, а Земля вокруг Солнца. Но как бы ни бунтовала наша интуиция, логика научного мышления неумолимо подводит нас к такому заключению. Между тем существуют парадоксы иного рода. Используя тот же логический аппарат, те же приемы рассуждения — а ведь они шлифовались тысячелетиями и на них основаны все наши знания! — мы неизбежно приходим к неразрешимому противоречию. Значит, речь идет о несовершенстве, об изъянах, глубоко коренящихся в самой логической системе нашего мышления.
***
Целых три года (с 1871 по 1874) Кантор пытался доказать, что взаимно однозначное соответствие между точками отрезка и точками квадрата невозможно. Мучительные поиски долго оставались безуспешными. И вдруг совершенно неожиданно для себя ученый пришел к совершенно противоположному результату! Он проделал то самое построение, которое считал неосуществимым. Потрясенный своим открытием, он написал математику Дедекинду: “Я вижу это, но не верю этому”. А вскоре убедился, что не только квадрат, но и куб равномощен линии...
Этого не знал Зенон. Ньютон тоже. Но это со всей непреложностью доказал Георг Кантор — человек, впервые отважившийся объять необъятное, сосчитать неисчислимое, измерить неизмеримое. Он проник с числом и мерой в таинственный и странный мир, над входом в который красуется кабалистический символ бесконечности. И который исстари вселял в души человеческие мистический хоррор инфйнити — ужас перед бесконечным. Беспрецедетное арифметическое беззаконие потрясло математиков. Но это было еще только началом. Теория множеств Кантора оказалась чреватой куда более серьезными парадоксами.
… На рубеже XIX и XX столетий выяснилось, что логические рассуждения, которыми оперировал Кантор, ведут к неразрешимым противоречиям. Первый нокаут канторовские построения получили от итальянского ученого Бурали-Форти, сформулировавшего парадокс наибольшего порядкового числа. Однако настоящей сенсацией оказалась знаменитая антиномия Рассела, опубликованная в 1903 году и получившая широкую известность под названием “парадокса брадобрея”.
Солдату приказали стать полковым цирюльником. Приказ строжайше предписывал брить тех и только тех, кто не бреется сам. За невыполнение — смертная казнь. Солдат исправно нес нехитрую службу парикмахера ровно один день. На следующее утро, проведя ладонью по подбородку, он взялся за лезвие и кисточку, чтобы придать своим щекам былой глянец, но... вовремя спохватился. Начни он скоблить собственную щетину, быть ему в числе тех, кто бреется сам. И тогда он в соответствии с грозным распоряжением начальства не должен себя брить. Если же он откажется себя брить, то станет одним из тех, кто сам не бреется и кого как раз он-то и обязан брить! Как же поступить бедняге брадобрею?!
Разумеется, перед нами шутливое иносказание настящего парадокса. На самом деле формулировка его более строга. Существуют множества, которые могут содержать сами себя в качестве элемента. Назовем их необыкновенными. Вчитайтесь, к примеру, в такое определение: “Множество А включает в себя все множества, которые можно определить предложением, содержащим меньше двадцати слов”. Только что приведенная фраза содержит всего 15 слов. Значит, само множество А тоже является элементом множества А! Разумеется, перед нами курьезное исключение. Большинство совокупностей обыкновенны — не содержат себя в качестве элемента. Давайте пока ограничимся только такими пай-множествами, которые вроде бы не сулят никакого подвоха. И рассмотрим множество всех обыкновенных множеств. Обозначим его буквой М. Предлагается ответить: само М — обыкновенное или необыкновенное? Бесспорно, оно должно быть либо тем, либо другим — третьего не дано. Допустим, что М — обыкновенное множество. Тогда оно должно содержать себя в качестве элемента: ведь М, по определению, множество всех до единого обыкновенных множеств. Но если оно включает самое себя, значит, перед нами необыкновенное множество! Ладно, пусть будет таковым. Стоп... Что же получилось: необыкновенное М входит в множество всех обыкновенных множеств? Но ведь мы же договорились вообще не иметь дела с необыкновенными множествами! М, по определению, не имеет права входить в множество всех и одних только обыкновенных множеств! А уж если оно угодило туда, пусть изволит стать обыкновенным. Остается одно: объявить множество М обыкновенным и... начать сызнова “сказку про белого бычка”. Как видно, в отличие от своего севильского коллеги из бессмертной трилогии “Бомарше” Фигаро лорда Рассела занялся интригами на более высоком уровне — в области логики и математики. Парадоксы теории множеств заставили математику ревизовать свои логические устои.
Как известно, ахиллесовой пятой канторовской теории множеств был ее неконструктивный характер. Кантору ставили в упрек, что он прибегал к доказательству от противного. Он обосновывал истинность фундаментальнейших выводов своей теории не прямо, а косвенно — демонстрируя абсурдность противоположного утверждения. До поры до времени это казалось убедительным. В самом деле, если одно из двух взаимоисключающих предложений ложно, то другое обязательно должно быть истинным. По крайней мере так гласил закон исключенного третьего. Прием редукцио ад абсурдум (приведение к нелепости) широко практиковался в математике со времен Евклида. Но ведь у Рассела в его парадоксе с брадобреем та же логическая процедура, проверенная тысячелетиями, дала осечку! Так почему же, спрашивается, она не могла подвести и Кантора? Неужто и впрямь... “движенья нет”? Во всяком случае, в логике опровергателей Зенона, апеллировавших к построениям Кантора...
Но, быть может, противоречия были порождены чересчур вольной трактовкой понятия “множество”? А если более строго сформулировать требования к смыслу каждого термина, к каждой логической процедуре? И даже попытаться, если удастся, построить “конструктивную” логику, где не будет закона исключенного третьего и доказательств от противного?
Именно такую задачу поставили перед собой математики XX века. А австрийский математик Курт Гёдель намеревался построить исчерпывающую и непротиворечивую теорию чисел (она имеет отношение и к парадоксам Зенона. ведь любое число можно изобразить точкой на отрезке и наоборот — любой точке сопоставить число). Вы думаете, ему это удалось? Как бы не так! Напротив, в 1931 году он доказал теорему: в любой достаточно полной логической системе можно сформулировать предложение, которое невозможно ни доказать, ни опровергнуть логическими средствами этой системы! А непротиворечивость любой системы нельзя доказать средствами этой системы...
Теорема Гёделя легла в основу целого направления в математике и логике. Сама математическая теория, непротиворечивость которой пытаются обосновать, стала предметом изучения особой “надматематической” науки, названной метаматематикой, или теорией доказательств. Какова природа истины? На каких посылках зиждется сам фундамент математики? Какой смысл имеют математические предложения: аксиомы, леммы, теоремы? Какую логическую структуру должны иметь доказательства? Так попытки разрешить парадоксы столкнулись с более широкой проблемой обоснования математики и логики.