- •1.1.2. Закон электромагнитной индукции Фарадея.
- •1.1.3. Природа сторонних сил
- •1.1.4. Правило Ленца
- •1.1.5. Токи Фуко
- •Вопросы и задания для самоконтроля к лекции 1
- •Лекция 2
- •1.2. Явление самоиндукции.
- •1.2.1. Индуктивность контура. Индуктивность соленоида
- •1.2.2. Эдс самоиндукции. Правило Ленца
- •1.2.3. Зависимость силы тока от времени при размыкании и замыкании цепи
- •1.2.4. Энергия магнитного поля контура с током. Объёмная плотность энергии магнитного поля
- •Вопросы и задания для самоконтроля к лекции 2
- •Колебания и волны Лекция 3
- •2.1. Классификация колебаний
- •2.2. Незатухающие механические колебания
- •2.2.1.Условия возникновения колебаний
- •2.2.2. Уравнение незатухающих гармонических колебаний. Основные характеристики незатухающих колебаний.
- •2.3. Затухающие колебания
- •2.3.1. Уравнение затухающих колебаний
- •2.3.2. Основные характеристики затухающих колебаний
- •2.4. Вынужденные механические колебания
- •2.4.1. Уравнение вынужденных механических колебаний
- •2.4.2. Механический резонанс
- •Вопросы и задания для самоконтроля к лекции 3
- •Лекция 4
- •2.5. Сложение гармонических колебаний
- •2.5.1. Диаграмма вектора амплитуды. Сложение гармонических колебаний одного направления и одинаковой частоты
- •2.5.2. Биения
- •2.5.3. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
- •Вопросы и задания для самоконтроля к лекции 4
- •Лекция 5
- •2.6. Свободные незатухающие электромагнитные колебания.
- •2.6.1. Условия возникновения колебаний.
- •2.6.2. Уравнения незатухающих электромагнитных колебаний.
- •2.7. Затухающие электромагнитные колебания
- •2.7.1. Уравнение затухающих электромагнитных колебаний
- •2.7.2. Характеристики затухающих электромагнитных колебаний
- •Вопросы и задания для самоконтроля к лекции 5
- •Лекция 6
- •2.8. Волны в упругой среде
- •2.8.1. Основные характеристики волн
- •2.8.2. Уравнение плоской механической волны.
- •2.8.3. Волновое уравнение
- •Вопросы и задания для самоконтроля к лекции 6
- •Лекция 7
- •2.9. Электромагнитные волны
- •2.9.1.Основные свойства электромагнитных волн. Волновое уравнение
- •2.9.2. Объемная плотность энергии эмв. Поток энергии. Вектор Умова – Пойтинга
- •Вопросы и задания для самоконтроля к лекции 7
- •Волновая оптика Лекция 8
- •3.1. Понятие световая волна и световой вектор
- •3.2. Интерференция света
- •3.2.1. Оптическая длина пути и оптическая разность хода. Условия максимума и минимума интенсивности света
- •3.2.2. Расчет интерференционной картины от двух когерентных источников света (опыт Юнга)
- •Вопросы и задания для самоконтроля к лекции 8
- •Лекция 9
- •3.2.3. Интерференция в тонких пленках
- •3.2.4. Полосы равной толщины (клин, кольца Ньютона) и полосы равного наклона
- •3.2.5. Практическое применение интерференции света
- •Вопросы и задания для самоконтроля к лекции 9
- •Лекция 10
- •3.3. Дифракция
- •3.3.1. Метод зон Френеля
- •3.3.2. Дифракция Френеля на диске.
- •3.3.3. Дифракция Френеля на круглом отверстии
- •3.3.4. Амплитудная и фазовая зонные пластинки.
- •Вопросы и задания для самоконтроля к лекции 10
- •Лекция 11
- •3.3.5. Дифракция в параллельных лучах на одной щели
- •3.3.6 Дифракция на дифракционной решетке
- •Вопросы и задания для самоконтроля к лекции 11
- •Квантовая оптика Лекция 12
- •4.1. Тепловое излучение
- •4.1.1. Характеристики, вводимые для описания теплового излучения.
- •4.1.2. Закон Кирхгофа
- •4.1.3. Экспериментальные законы теплового излучения а.Ч.Т.
- •4.1.4. Объяснение закономерностей теплового излучения а.Ч.Т.
- •Вопросы и задания для самоконтроля к лекции 12
- •Лекция 13
- •4.2. Внешний фотоэффект
- •4.2.1. Вольт-амперная характеристика, ее основные закономерности.
- •4.2.2. Уравнение Эйнштейна для фотоэффекта.
- •4.2.3. Опытные законы фотоэффекта, их объяснение.
- •4.2.4. Зависимость задерживающего напряжения от частоты.
- •4.3. Эффект Комптона.
- •4.4. Природа электромагнитного излучения. Корпускулярно-волновой дуализм
- •Вопросы и задания для самоконтроля к лекции 13
- •Элементы квантовой механики Лекция 14
- •5.1. Гипотеза де Бройля. Опыты, подтверждающие волновые свойства микрочастиц
- •5.2. Соотношения неопределенностей Гейзенберга
- •5.2.1. Соотношения неопределенностей как проявление волновых свойств
- •5.2.2. Условия применимости классической механики для описания движения микрочастиц
- •5.3. Волновая функция. Стандартные условия
- •Вопросы и задания для самоконтроля к лекции 14
- •Лекция 15
- •5.4. Уравнение Шредингера
- •5.4.1. Микрочастица в бесконечно глубокой прямоугольной потенциальной яме.
- •5.4.2. Туннельный эффект.
- •Вопросы и задания для самоконтроля к лекции 15
- •Основы физики атомного ядра Лекция 16
- •6.1. Строение и состав атомного ядра
- •6.1.1.Характеристики атомного ядра
- •6.1.2. Ядерные силы. Свойства ядерных сил
- •6.2. Ядерные реакции
- •6.3. Явление радиоактивности
- •6.3.1. Виды радиоактивного распада ядер
- •6.3.2. Основной закон радиоактивного распада. Активность радиоактивного вещества
- •Вопросы и задания для самоконтроля к лекции 16
- •Библиографический список
2.5.2. Биения
Биения − это колебания, с периодически изменяющейся амплитудой, получающиеся в результате сложения двух гармонических колебаний одного направления с близкими частотами. Сами биения не являются гармоническими колебаниями.
Выведем
уравнение биений. Для этого рассмотрим
два гармонических колебания х1
и х2, происходящих в одном
направлении с близкими частотами (
>>
)
и равными амплитудами (для удобства
расчетов):
.
Тогда результирующее колебание будет происходить по закону
, (2.37)
где при выводе
формулы (2.37) была учтена формула сложения
косинусов (
).
Первый
сомножитель в выражении (2.37) изменяется
со временем значительно медленнее
второго (
),
поэтому можно считать, что результирующее
колебание
представляет собой колебание с циклической
частотой
и с изменяющейся со временем амплитудой
[3]
. (2.38)
Под периодом
биений – понимают период изменения
амплитуды результирующего колебания:
, (2.39)
где
– циклическая частота биений [3].
На рис. 2.10
приведены графики зависимости амплитуды
биений
и смещения
м.т. от времени t [3].
Рис. 2.10
В общем случае,
когда складываются колебания близких
частот, но не равных амплитуд, амплитуда
результирующего колебания (биений)
изменяется в пределах, заключенных в
интервале от
до (
).
Приведем пример биений: источником двух звуковых сигналов является звуковой генератор. Сначала генерируются сигналы разных частот, таких, что человек различает эти сигналы как отдельные. По мере сближения с помощью звукового генератора частот этих сигналов, человек начинает вместо двух разных сигналов слышать один, но с переменной амплитудой (биения). При выравнивании частот сигналов человек слышит один звуковой сигнал с постоянной амплитудой.
Биения можно
использовать, например: 1) для настройки
музыкальных инструментов, при анализе
восприятия звуков человеком; 2) для
определения частоты какого-либо
гармонического электрического колебания.
Для этого на вход осциллографа подают
гармонические колебания от звукового
генератора (частоту
этих колебаний можно изменять) и
гармонические колебания с неизвестной
частотой
от какого-либо источника. По наблюдаемой
на экране осциллографа картине биений
определяют период биений
и частоту колебаний (
)
[3].
2.5.3. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
Рассмотрим материальную
точку, одновременно участвующую в двух
взаимно перпендикулярных колебаниях,
происходящих вдоль осей
и
, (2.40)
В общем случае, в результате
сложения этих колебаний материальная
точка будет двигаться по траектории,
определяемой соотношением их частот,
амплитуд и разности начальных фаз
[3].
а) Пусть частоты складываемых колебаний одинаковы
Проводя математические преобразования и избавляясь от временной зависимости, получим уравнение траектории результирующего движения:
(2.41)
Рассмотрим некоторые примеры сложения взаимно перпендикулярных колебаний.
1)
;
;
;
(2.42)
– уравнение прямой. Траектория движения в этом случае изображена на рис. 2.11, а.
2)
;
;
(2.43)
– уравнение прямой. Траектория результирующего движения изображена на рис. 2.11, б.
3)
(2.44)
– уравнение эллипса (при
получается окружность). Траектория
результирующего движения изображена
на рис. 2.11, в.
Рис. 2.11
Направление движения точки по траектории определяется разностью начальных фаз (см. рис. 2.11, в).
Все изображенные на рис. 2.11 траектории движения м.т. называют фигурами Лиссажу. В случае, если частоты складываемых колебаний различны, получаются фигуры Лиссажу более сложной формы.
Фигуры Лиссажу можно применять для определения частоты какого-либо гармонического колебания (сигнала). Для этого нужно на входы х и у осциллографа подать два сигнала – с известной (колебание поступает от генератора электромагнитных колебаний, его частоту можно плавно изменять) и неизвестной частотой. Изменяя частоту генератора можно добиться устойчивой фигуры Лиссажу и, зная по ее виду отношение частот складываемых колебаний определить неизвестную частоту [3].
