
- •2. Особенности адсорбции на поверхности твердого адсорбента. Уравнение Фрейндлиха, его анализ и определение констант уравнения.
- •3. Что понимается под поверхностным слоем, поверхностной энергией и поверхностными явлениями. Какие параметры относятся к количественным характеристикам дисперсности? Дайте их полную характеристику.
- •4. Представьте, что Вам необходимо сделать доклад по теме: “Суспензия”. Напишите план доклада и в соответствии с ним составьте тезисы доклада.
- •5. Что понимается под поверхностным натяжением и как оно зависит от природы веществ, образующих поверхность раздела фаз?
- •6. Что такое капиллярное давление? Каковы причины его возникновения? Вывод и анализ уравнения Лапласа.
- •8. Поверхностное натяжение: причины возникновения, его физический смысл с термодинамической и силовой точек зрения, определение и методы измерения.
- •9. Что такое агрегативная устойчивость? Факторы, обеспечивающие агрегативную устойчивость лиофобных золей.
- •10. Характеристика порошков как дисперсных систем. Какие порошки обладают более высокой текучестью – грубодисперсные или высокодисперсные? Какие порошки легче распылять гидрофильные или гидрофобные?
- •11. Влияние температуры на термодинамические параметры поверхностного слоя – Us , qs , σ, Ss. (Вывод и анализ уравнения Гиббса-Гельмгольца для поверхностного слоя).
- •12. Адгезия и когезия. Какими силами они обусловлены? Что понимается под работой адгезии и когезии? Вывод уравнений, используемых для вычисления работы адгезии (Дюпре) и работы когезии.
- •13. Что такое аэрозоли? Приведите примеры аэрозолей бытовых, атмосферных и промышленных.
- •14. Рассмотрите процесс смачивания в зависимости от соотношения работы адгезии и когезии (вывод и анализ уравнения Юнга-Дюпре).
- •15. Теория кинетики быстрой коагуляции м. Смолуховского: основные положения; вывод и анализ уравнения, представляющего кинетику изменения общего числа частиц в процессе коагуляции? (Схож с 74)
- •16. Каковы условия поднятия жидкостей в капиллярах? Какова роль этого явления в природе и технике?
- •19. Рассмотрите возможные механизмы возникновения двойного электрического слоя (дэс) на границе раздела твердое тело – раствор.
- •21. В чем заключается инверсия смачивания? Какое практическое значение имеет это явление?
- •22. Какие величины используют для количественного описания адсорбции? Дайте определение этих величин и покажите, как их можно вычислить в общем виде.
- •23. Почему в случае смачивания капилляра жидкость в нем поднимается, а при несмачивании, наоборот, опускается?
- •25. Какие поверхностные явления сопровождают технологические процессы? Перечислите и дайте их краткую характеристику.
- •26. Теория мономолекулярной адсорбции Ленгмюра: основные положения теории, вывод уравнения изотермы адсорбции и ее анализ.
- •29. Смачивание: покажите взаимосвязь между адгезией и способностью жидкости смачивать твердую поверхность. В чем состоит различие между явлениями адгезии и смачивания?
- •30. Чем объяснить, что концентрация кислорода в воздухе земной атмосферы уменьшается в два раза при удалении от поверхности Земли на 5 км, а суспензии гуммигута на высоте 30 мкм?
- •31. По каким признакам классифицируют дисперсные системы? Привести их классификацию по всем классификационным признакам.
- •32. В чем заключается сущность ионообменной адсорбции? Какое состояние называется ионообменным равновесием? Какая величина его характеризует?
- •33. Что такое расклинивающее давление и каковы причины его возникновения? Назовите составляющие расклинивающего давления и охарактеризуйте их.
- •34. Адсорбция на границе раздела раствор – газ (воздух). Вывод и анализ уравнения адсорбции Гиббса для разбавленных растворов бинарной системы.
- •35. Зависимость термодинамической реакционной способности от дисперсности.
- •37. Кинетическая устойчивость. Связь между кинетической устойчивостью и гипсометрическим законом.
- •38. Как, используя уравнение Шишковского, можно определить константы уравнения Ленгмюра (к и а).
- •40. Свойства поверхностей жидких и твердых тел. Каковы особенности адсорбции пав из растворов на поверхности твердого тела?
- •41. Дайте сравнительную характеристику мономолекулярной и полимолекулярной адсорбции. Приведите основные типы изотерм для полимолекулярной адсорбции.
- •42. Дайте характеристику двойного электрического слоя на границе раздела фаз твердое тело – раствор. Как изменяется потенциал в этом слое с расстоянием от поверхности твердой фазы?
- •43. Что понимается под термином “разрушение дисперсной системы”, какая устойчивость при этом теряется? Правила электролитной коагуляции лиофобных золей.
- •44. Капиллярные явления. Поднятия и опускания жидкости в капиллярах: уравнение Жюрена, его вывод и анализ.
- •46. Поверхностная энергия и равновесная форма тела: правило Гиббса-Кюри для твердых и жидких тел.
- •47. Электрокинетические явления 1-го рода, история их открытия и практическое приложение. Как по скорости электрофореза и электроосмоса можно вычислить электрокинетический потенциал?
- •48. Как объяснить зависимость, установленную правилом Дюкло-Траубе?
- •50. Дайте полную характеристику дисперсной системы. Классификационная характеристика этих систем по агрегатному состоянию дисперсной фазы и дисперсионной среды, по виду дисперсной фазы.
- •51. Представьте, что Вам необходимо сделать доклад по теме “Эмульсии”. Напишите план доклада и составьте к нему тезисы.
- •55. Каковы возможные механизмы образования на поверхности раздела фаз двойного электрического слоя.
- •57. Составьте задачу, для решения которой нужно использовать правило Панета-Фаянса.
- •58. Чем обусловлено светорассеяние в дисперсных системах и истинных растворах? Какими параметрами характеризуют рассеяние света в системе?
- •59. Электрокинетические явления 2-го рода: история их открытия, характеристика и практическое приложение.
- •61. Какова взаимосвязь давления насыщенного пара с кривизной поверхности: вывод и анализ уравнения Томсона-Кельвина.
- •63. Каков физический смысл термина “поверхностная активность”? к каким веществам применяется этот термин? Дайте их характеристику и приведите полную классификацию по всем классификационным признакам.
- •64. Дайте характеристику коллоидных растворов (золей) по всем классификационным признакам. Чем они отличаются от суспензий. Приведите примеры таких систем.
- •65. Что представляет собой релаксационный эффект, электрофоретическое торможение и поверхностная проводимость? Как их нужно учитывать при определении величины -потенциала?
- •70. Какая связь существует между уравнениями Гиббса и Ленгмюра? Напишите уравнение, выражающее эту взаимосвязь, и поясните физико-химический смысл входящих в него величин.
- •72. Что представляют собой потенциальные кривые взаимодействия между коллоидными частицами? Как на их основе объясняют явление коагуляции?
- •75. Что понимается под работой адсорбции? Как, используя это понятие, можно объяснить связь поверхностной активности пав с длиной углеводородного радикала в молекуле пав (правило Дюкло-Траубе).
57. Составьте задачу, для решения которой нужно использовать правило Панета-Фаянса.
Для получения золя хлорида серебра смешали 15 мл 0,025 н раствора хлорида калия с 85 мл 0,005 н раствора нитрата серебра. Написать формулу мицеллы образовавшегося золя.
Решение.
Рассчитаем количество вещества эквивалентов солей, участвующих в образовании золя: 15·0,025 = 0,375 ммоль-экв. KCl; 85·0,005 = 0,425 ммол-экв. AgNO3.
По закону эквивалентов в реакцию вступает одинаковое число эквивалентов веществ, следовательно в избытке AgNO3. В растворе присутствуют ионы Ag+, K+ и NO3–.
В соответствии с правилом Панета-Фаянса потенциалопределяющими являются ионы Ag+ , а противоионами NO3–. Формула мицеллы:
{[nAgCl]mAg+(m-x)NO3–}xNO3–
58. Чем обусловлено светорассеяние в дисперсных системах и истинных растворах? Какими параметрами характеризуют рассеяние света в системе?
Светорассеяние наблюдается когда длина световой волны больше размера частиц дисперсной фазы. Если длина световой волны много меньше диаметра частицы, происходит отражение света. Следует отличать светорассеяние частицами не проводящими и проводящими электрический ток.
Если рассматривать высокодисперсные системы (золи) в проходящем свете, то они кажутся прозрачными и ничем не отличаются от истинных растворов. Однако при наблюдении сбоку в этих же растворах наблюдается свечение, которое называют опалесценцией (боковым свечением).
Количественные закономерности рассеянного света для сферических частиц, не проводящих электрический, ток были выведены Релеем:
,
(7.1)
где
и
– интенсивности падающего и рассеянного
света; V – объем частицы; λ – длина волны
падающего света;
– частичная концентрация (число частиц
в 1 м3 золя); n1 и n0 – показатели преломления
дисперсной фазы и дисперсионной среды.
В уравнение (7.1) входит частичная концентрация дисперсной фазы , которая определяется числом частиц в единице объема. Частичная концентрация связана с массовой концентрацией дисперсной фазы соотношением:
,
(7.2)
где
С – массовая концентрация (масса частиц
дисперсной фазы в 1 м3 золя); V – объем
частицы;
– частичная концентрация (число частиц
в 1 м3 золя);
– плотность дисперсной фазы.
С учетом (7.2), уравнение Релея принимает вид:
.
(7.3)
Уравнение Релея показывает:
1.
Интенсивность рассеянного света прямо
пропорциональна числу частиц (концентрации
золя):
. Это позволяет определить концентрацию
дисперсной фазы по величине светорассеяния.
2.
Интенсивность рассеянного света прямо
пропорциональна объему частиц (зависит
от размеров частиц):
;
. Это позволяет определить размер частиц
дисперсной фазы.
3.
Интенсивность рассеянного света обратно
пропорциональна длине волны падающего
света:
. Следовательно, чем короче длина волны
падающего света, тем больше рассеяние.
Таким образом, если на частицу будет падать белый свет, то наибольшее рассеяние будет испытывать синяя и фиолетовая части спектра, обладающие наименьшей длиной волны. Поэтому при боковом свечении дисперсные системы будут иметь голубоватую окраску, а в проходящем свете – красноватую, что связано с потерей в результате рассеяния синей и фиолетовой части спектра. Часть солнечных лучей, проходя через земную атмосферу, рассеивается, поэтому атмосфера Земли имеет голубоватую окраску. При восходе и закате Солнца поток лучей проходит насквозь, поэтому цвет неба становится красно-оранжевым.
Для светомаскировки применяют синие лампы (когда хотят чтобы они остались незамеченными с самолетов, т.к. синие лучи при прохождении через толстый слой воздуха, особенно если в нем содержаться частицы пыли или тумана, полностью рассеиваются), т.к. синий цвет больше всего рассеивается. Для сигнализации применяют красный свет (он плохо рассеивается в тумане).
4.
Интенсивность рассеянного света прямо
пропорциональна разности показателей
преломления дисперсной фазы и дисперсионной
среды
. Чем больше разность между показателями
преломления, тем больше рассеяние света.
Поэтому рассеяние металлическими золями
оказывается сильнее, чем неметаллическими
из-за их большой плотности и большой
величины показателя преломления
дисперсной фазы
, и дисперсионной среды
, следовательно, разности (
). Если
, то интенсивность рассеяния равна нулю
= 0, т.е. в однородных средах светорассеяние
не наблюдается.
Из уравнений (7.1) и (7.3) следует, что для одного и того же золя при прочих равных условиях будут выполняться соотношения:
;
;
;
. (7.4)
Рассеяние света используют для исследования дисперсных систем. К таким методам исследования относятся: ультрамикроскопия, турбидиметрия и нефелометрия.
Рассеяние света происходит во всех направлениях, но интенсивность его в разных направлениях различна. Максимальная интенсивность рассеянного света наблюдается в направлении, перпендикулярном падающему свету .
Рассеянный свет чаще всего поляризован и яркость светорассеяния будет зависеть от поляризации, которая максимальна в перпендикулярном направлении (под углом 90° к падающему свету).
Рассеяние света используют для исследования дисперсных систем. К таким метолам исследования относятся: ультрамикроскопия, турбидиметрия и нефелометрия.