
- •1. Химическая технология. Основные понятия и определения. Развитие химической промышленности в России.
- •2. Основные направления в развитии химической технологии.
- •3. Показатели эффективности работы химических предприятий. Технологические и экономические критерии эффективности.
- •4. Сырье в химической промышленности. Способы обогащения твердого сырья.
- •5. Способы обогащения жидкого и газообразного сырья. Комплексное использование сырья.
- •6. Вода в химической промышленности. Жесткость воды и способы ее устранения.
- •7. Промышленная водоподготовка. Основные показатели качества воды.
- •8. Энергетика химической промышленности. Источники энергии.
- •9. Классификация химико-технологических процессов.
- •11. Основные технологические показатели хтп. Степень превращения. Равновесная степень превращения.
- •12. Матеpиальные и энеpгетические балансы химико-технологических пpоцессов.
- •13. Теpмодинамические хаpактеpистики химических пpоцессов. Теpмодинамический анализ.
- •Термодинамический анализ химико-технологических процессов
- •15. Способы смещения pавновесия. Влияние инертного газа на химическое равновесие.
- •17. Понятие оптимальных температур. Оптимальные температуры для обратимых и необратимых экзо- и эндотермических pеакций.
- •18. Скоpость химико-технологического пpоцесса. Пpавило Вант-Гоффа. Область пpотекания пpоцесса.
- •19. Способы повышения скоpости химико-технологических пpоцессов.
- •21. Гомогенные пpоцессы. Изменение основных технологических показателей хтп во вpемени.
- •22. Сущность и виды катализа. Гомогенный катализ. Влияние катализатора на скорость реакций.
- •23. Закономеpности гетеpогенных пpоцессов. Диффузионные стадии гетеpогенных пpоцессов. Скоpость гетеpогенных химико-технологических пpоцессов.
- •24. Основные стадии гетерогенных процессов, лимитирующая стадия процесса.
- •25. Диффузионные стадии гетерогенных процессов. Внутренняя и внешняя диффузия.
- •26. Влияние технологических параметров на область протекания гетерогенных процессов, методы определения области протекания процессов.
- •27. Гетеpогенный катализ. Основные понятия. Тpебования к пpомышленным катализатоpам.
- •28. Классификация химических реакторов. Реакторы для проведения гомогенных и гетерогенных процессов.
- •29. Математические модели pеактоpа идеального вытеснения и pеактоpа идеального смешения.
- •30. Сравнительные характеристики реакторов идеального смешения и идеального вытеснения.
- •31. Основные требования, пpедъявляемые к химическим pеактоpам.
- •33. Стpуктуpа хтс. Подсистемы, элементы, потоки.
- •34. Математические модели хтс: аналитическая и иконогpафическая (топологическая и стpуктуpная блок-схема).
- •35. Качественные (обобщенные) модели хтс: опеpационно-описательная и иконогpафическая (функциональная, стpуктуpная, опеpатоpная, технологическая схемы).
- •36. Основные направления охраны окружающей среды от промышленных выбросов.
- •37. Свойства, получение и применение серной кислоты.
- •39. Получение сернистого газа. Физико-химические основы пpоцесса.
- •40. Контактный способ производства серной кислоты. T-X диаграмма.
- •41. Физико-химические основы окисления диоксида серы.
- •42. Катализаторы окисления диоксида серы. Кинетика окисления so2.
- •43. Контактное отделение сеpнокислотного производства. Контактные аппаpаты.
- •44. Абсоpбция тpиоксида сеpы. Физико-химические основы пpоцесса.
- •45. Системы одинаpного и двойного контактиpования в пpоизводстве сеpной кислоты.
- •46. Пеpспективы pазвития сеpнокислотного пpоизводства.
- •47. Получение водоpода. Физико-химические основы конвеpсии метана.
- •48. Двухступенчатая конвеpсия метана.
- •49. Получение водоpода. Физико-химические основы конвеpсии co.
- •50. Технологическая схема пpоизводства синтез-газа для синтеза аммиака.
- •51. Синтез аммиака. Физико-химические основы пpоцесса.
- •52. Получение аммиака. Основные стадии пpоизводства.
- •53. Катализатоpы синтеза аммиака. Оптимальные условия синтеза.
- •54. Технологические схемы синтеза аммиака.
- •55. Колонна синтеза аммиака. Устpойство, пpинцип pаботы и эксплуатация.
- •56. Получение азотной кислоты. Основные стадии пpоизводства.
- •57. Окисление аммиака. Физико-химические основы пpоцесса.
- •58. Катализатоpы окисления аммиака. Оптимальные условия контактиpования.
- •59. Пеpеpаботка нитpозных газов в азотную кислоту. Физико-химические основы пpоцесса.
- •60. Технологические схемы пpоизводства слабой азотной кислоты. Анализ схем.
- •61. Классификация минеpальных удобpений.
- •По количеству питательных элементов
- •По агрегатному состоянию
- •Твердые удобрения, в свою очередь, подразделяются на
- •62. Фосфатное сыpье и методы его пеpеpаботки.
- •63. Пpоизводство пpостого супеpфосфата. Гетеpогенные пpоцессы и pеакции в пpоизводстве супеpфосфата.
- •64. Супеpфосфатная камеpа. Устpойство, пpинцип pаботы.
- •65. Получение двойного супеpфосфата. Основные пpоцессы и pеакции. Способы производства.
- •66. Аммиачная селитpа. Сыpье и способы пpоизводства. Аппаpат итн. Устpойство, пpинцип pаботы.
- •67. Пpоизводство каpбамида. Основные стадии пpоцесса.
- •68. Получение сложных удобpений.
27. Гетеpогенный катализ. Основные понятия. Тpебования к пpомышленным катализатоpам.
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.
Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.
1. Диффузия реагирующих веществ к поверхности твердого вещества
2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
3. Химическая реакция между реагирующими молекулами
4. Десорбция продуктов с поверхности катализатора
5. Диффузия продукта с поверхности катализатора в общий поток
Требования к катализаторам:
постоянная высокая каталитическая активность,
селективность,
механическая прочность,
термостойкость,
устойчивостью к действию каталитических ядов,
большая длительность работы,
легкая регенерируемость,
необходимые гидродинамические характеристики,
невысокая стоимость.
28. Классификация химических реакторов. Реакторы для проведения гомогенных и гетерогенных процессов.
Классификация химических реакторов и режимов их работы.
Химические реакторы для проведения различных процессов отличаются друг от друга по конструктивным признакам. Однако, несмотря на существующие различия, можно выделить общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор метода расчета.
Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
Классификация реакторов по гидродинамической обстановке. В зависимости от гидродинамической обстановки можно разделить все реакторы на реакторы смешения и вытеснения.
Реакторы смешения - это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения - трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока.
В теории химических реакторов обычно сначала рассматривают два идеальных аппарата - реактор идеального или полного смешения и реактор идеального или полного вытеснения.
Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т.д.
Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущий поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока.
Реальные реакторы в большей или меньшей степени приближаются к модели идеального вытеснения или идеального смещения. Внесение определенных поправок на неидеальность позволяет использовать модели идеальных аппаратов в качестве исходных для описания реальных реакторов.
Классификация по условиям теплообмена. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами (это тепловые эффекты химических реакций и сопровождающих их физических явлений, таких, например, как процессы растворения, кристаллизации, испарения и т.п.). Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора. Разность температур Т является движущей силой теплообмена.
При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен и на нагрев или охлаждение реакционной смеси.
Изотермические реакторы. Для сохранения постоянной температуры процесса в реакторах этого типа необходимо подводить или отводить тепло в соответствии с тепловым эффектом реакции. Однако, изотермические реакторы сравнительно редко используются в крупномасштабных производствах; высокая стоимость оборудования или теплообмена делает процесс неэкономичным. Поэтому промышленные реакторы чаще проектируются как адиабатическими или политропическими.
Политропические реакторы. В этих аппаратах предусмотрен подвод или отвод тепла.
В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется за счет теплообмена с окружающей средой, а частично вызывает изменение температуры реакционной смеси.
Особо следует выделить автотермические реакторы, в которых поддержание необходимой температуры процесса осуществляется только за счет теплоты химического процесса без использования внешних источников энергии. Обычно стремятся к тому, чтобы химические реакторы, особенно применяемые в крупнотоннажных производствах, были автотермическими.
Классификация по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ - твердое вещество, жидкость твердое вещество и др. Особо следует выделить реакторы для проведения гетерогенно-каталитических процессов.
Классификация по способу организации процесса. По способу организации процесса (способу подвода реагентов и отвода продуктов) реакторы подразделяют на периодические, непрерывно-действующие и полунепрерывные (полупериодические).
В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят после окончания процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.
Между отдельными реакционными циклами в периодическом реакторе необходимо осуществить вспомогательные операции - загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.
В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества и подача реагирующих веществ, химическая реакция, вывод готового продукта) осуществляются одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических производствах, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывно действующих реакторах.
Время пребывания отдельных частиц потока в непрерывно-действующем реакторе, в общем случае, случайная величина. Так как от времени, в течение которого происходит реакция, зависит глубина химического превращения, то она будет разной для частиц с разным временем пребывания в реакторе. Средняя глубина превращения определяется видом функции распределения времени пребывания отдельных частиц, зависящим, в свою очередь, от характера перемешивания, структуры потоков в аппарате и для каждого гидродинамического типа реактора индивидуальным.
Реактор полунепрерывного (полупериодического) действия характеризуется тем, что один из реагентов поступает в него непрерывно, а другой - периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно, или наоборот.
Классификация по характеру изменения параметров процесса во времени. В зависимости от характера изменения параметров процесса во времени одни и те же реакторы могут работать в стационарном и нестационарном режимах.
Рассмотрим некоторую произвольную точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени. В стационарном режиме параметры потока на выходе из реактора не зависят от времени. Обычно это постоянство выходных параметров обеспечивается постоянством во времени параметров на входе в реактор.
Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону, режим работы реактора называют нестационарным. Нестационарный режим является более общим. Стационарный режим возможен для непрерывно-действующих проточных реакторов. Но даже эти реакторы работают в нестационарном режиме в моменты их пуска и остановки. Нестационарными являются все периодические процессы.
Нестационарные реакторы характеризуются положительным или отрицательным накоплением вещества или энергии в реакторе. Например, для периодического реактора характерно положительное накопление продуктов реакции и отрицательное накопление (убыль) исходных реагентов. При протекании в таком реакторе экзотермической реакции в отсутствие теплообмена с окружающей средой будет иметь место накопление теплоты (энергии), которое приведет к росту температуры.
Стационарные проточные реакторы (описываются более простыми уравнениями); протекающие в них процессы легче автоматизировать.
Нестационарность процесса в реакторе, естественно, вносит определенные усложнения и в описание реактора, и в управление его работой, однако во многих случаях нестационарные режимы технологических процессов, протекающих в химических реакторах, легче приблизить к оптимальным.
Классификация по конструктивным характеристикам. Химические реакторы отличаются друг от друга и по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратов. По этому принципу классификации можно выделить такие типы реакторов: емкостные реакторы (автоклавы; реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т.п.). Колонные реакторы (реакторы-колонны насадочного и тарельчатого типа; каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы); реакторы типа теплообменника; реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи и т.п.).
Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения реакций с двухфазными системами подразделяют на газо-жидкостные, реакции для систем газ – твёрдое тело, жидкость твёрдое тело и др. Особо выделяют реакторы для гетерогенно-каталитических процессов.