Добавил:
НЕ БОНПАРИ Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФЖЧ 1 кр.docx
Скачиваний:
26
Добавлен:
10.02.2024
Размер:
64.26 Кб
Скачать

14. Утомление мышц. Причина утомления изолированной мышцы. Причина утомления мышц в целостном организме.

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление.

В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце. При длительней работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.

2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена  (в частности, молочной кислоты, образующейся при расщеплении гликогена), оказывающих угнетающее влияние на работоспособность мышечных волокон. 

3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Причины утомления мышц в целостном организме:

  • Накопление калия, который снижает способность мышц к сокращению

  • Причины локальной усталости лежат в утомлении нервных центров

  • Длительное мышечное напряжение приводит к развитию утомления

  • Причины утомления связаны с накоплением продуктов распада органических веществ в местах контактов: нейрон-нейрон, нейрон-мышца.

27. Основные физиологические особенности гладких мышц. Примеры, демонстрирующие эти свойства.

Гладкие мышцы находятся в стенках полых внутренних органов (желудок, кишечник, мочевой пузырь и др.), а также в стенках кровеносных сосудов.

Основные функциональные особенности гладких мышц по сравнению с поперечнополосатыми сводятся к следующему:

  • Скрытый (латентный) период возбуждения у гладких мышц больше, чем у поперечнополосатых.

  • У гладких мышц и пороговое раздражение выше, следовательно, возбудимость у них ниже.

  • Сокращение гладких мышц происходит, медленнее и более продолжительно, чем поперечнополосатых мышц.

  • Гладкие мышцы могут находиться в состоянии длительного сокращения, но оно не является тетанусом, который характерен для поперечнополосатых мышц. При длительном, или тоническом, сокращении гладких мышц в отличие от тетануса скелетных мышц обмен веществ изменяется незначительно.

Следует отметить, что обмен веществ в гладких мышцах вообще менее интенсивен, чем в поперечнополосатых. Гладкие мышцы по сравнению с поперечнополосатыми обладают большей растяжимостью, что имеет существенное значение в функции органов, объем которых резко изменяется (мочевой пузырь, матка). От сокращения гладких мышц зависит не только объем полых внутренних органов, но также и перемещение их содержимого (например, пищевых масс в пищеварительном канале).

28. Синапсы в центральной нервной системе, механизм передачи возбуждения в нервных синапсах.

Синапс – это структурно-функциональное образование, обеспечивающее переход возбуждения или торможения с окончания нервного волокна на иннервирующую клетку.

Cтруктура синапса:

1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке);

2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс);

3) синаптическая щель (пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).

Основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

----------------------------------------------------------------------------------------

Соседние файлы в предмете Физиология человека и животных