
- •1. Аминокислоты. Классификация(по структуре, по характеру r-групп, заменимые и незаменимые).
- •4.Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
- •5. Третичная структура белка и силы ее стабилизирующие.
- •6. Четвертичная структура белка. Понятия о денатурации и деструкции.
- •7.Кооперативный эффект связывания кислорода гемоглобином.
- •8. Отличия ферментов от неорганических катализаторов.
- •9. Классификация ферментов с примерами реакций на каждый класс.
- •10. Влияние температуры, pH и концентрации фермента на скорость ферментативной реакции.
- •11.Влияние концентрации субстрата на скорость ферментативной реакции. Вывод уравнения Михаэлиса-Ментен.
- •13. Ингибирование ферментов. Неконкурентное ингибирование.
- •14.Аллостерические ферменты.
- •15.Активный центр фермента и его свойства.
- •16. Кофакторы и коферменты. Классификация.
- •17.Молекулярные механизмы ферментативного катализа.
- •18. Способы определения активности фермента. Единицы измерения. Понятие об удельной и молярной активности.
- •19. Изоферменты.
- •20. Моносахариды. Представители и свойства. Функции углеводов.
- •22. Гомо- и гетерополисахариды.
- •23.Липиды. Классификация липидов и их функции.
- •24. Жирные кислоты. Их роль в организме.
- •26. Сфинголипиды. Церамиды. Ганглиозиды
- •27. Неомыляемые липиды. Холестерин и его свойства.
- •28. Воски
- •29. Пути превращения углеводов. Реакции гликолиза и его регуляция.
- •30. Пентозофосфатный путь и его значение.
- •31. Путь Энтнера-Дудорова
- •32. Работа пируватдегидрогеназного комплекса
- •33.Работа цикла трикарбоновых кислот(цтк). Анаплеротические реакции цтк.
- •34.Реакции глюконеогенеза
- •35. Распад и синтез гликогена. Гормональная регуляция.
- •36.Глюкозо-аланиновый и глюкозо-лактатный путь, роль в организме человека.
- •37.Дыхательная цепь митохондрий. Характеристика переносчиков
- •38. Хемиоосмотическая модель п.Митчелла (основные постулаты и доказательства).
- •39.Ингибиторы и разобщители дыхательной цепи митохондрий.
- •40. Витамины, классификация. Антивитамины. Несовместимость витаминов. Особенности водо- и жирорастворимых витаминов.
- •41. Жирорастворимые витамины(a, d, e, k).
- •42. Водорастворимые витамины группы b (b1, b2, в12)
- •43. Фолиевая кислота и пантотеновая кислота
- •44. Витамины с и н.
- •57. Окисление жирных кислот с нечетным числом углеродных атомов.
- •58.Окисление ненасыщенных жирных кислот.
- •59. Реакции синтеза жирных кислот.
- •60. Жирные кислоты. Механизм действия моющих средств.
- •61. Глиоксилатный цикл и его биологическая роль.
- •62. Метаболизм глицерина.
- •63.Пути катаболизма углеродного скелета аминокислот. Пути обмена аминокислот.
- •64. Реакции трансаминирования. Использование трансаминаз в медицине.
- •65.Прямое и непрямое дезаминирование аминокислот.
- •66.Особенности дезаминирования аминокислот в скелетных мышцах
- •67.Метаболизм аммиака.
- •68. Цикл мочевины.
- •69.Химический состав нуклеиновых кислот. Правила Чаргаффа.
- •70.Структурная организация олиго и полинуклеотидов. Характеристика первичной структуры днк.
- •71.Вторичная структура днк. Формы двойной спирали.
- •72.Третичная структура днк.
- •73.Структура и свойства рибосомальных, матричных и транспортных рнк.
- •74. Биосинтез белка. Стадии активации и инициации.
- •75. Биосинтез белка. Стадии элонгации и терминации.
- •76. Ингибиторы биосинтеза белка. Механизм действия дифтерийного токсина.
- •77. Антибиотики-ингибиторы биосинтеза белка.
- •80. Распад липидов в желудочно-кишечном тракте.
- •Переваривание и всасывание
- •Переваривание холестерина
- •Всасывание
76. Ингибиторы биосинтеза белка. Механизм действия дифтерийного токсина.
Одним из мощных ингибиторов белкового синтеза является пуромицин. В результате структурного сходства с концевым остатком АМФ в аминоацил-тРНК' он легко взаимодействует с А-участком пептидил-тРНК с образованием пептидил-пуромицина. Поскольку пептидил-пуромицин не несет на себе триплета антикодона, он тем самым тормозит элонгацию пептидной цепи, вызывая обрыв реакции. При помощи пуромицина было доказано, например, что гормональный эффект в ряде случаев зависит от синтеза белка de novo. Укажем также, что пуромицин тормозит синтез белка как у прокариот, так и у эукариот. Белковый синтез тормозится актиномицином D, обладающим противоопухолевым эффектом, который вследствие высокой токсичности применяется редко. Он оказывает тормозящее влияние на синтез всех типов клеточной РНК, в особенности мРНК. Это свойство вызвано тормозящим влиянием актиномицина D на ДНК-зависимую РНК-полимеразу, поскольку он связывается с остатками дезоксигуанозина цепи ДНК, выключая матричную функцию последней. Можно считать, что актиномицин D ингибирует транскрипцию ДНК. Другим антибиотиком, также тормозящим синтез клеточной РНК, является используемый при лечении туберкулеза рифамицин. Этот препарат тормозит ДНК-зависимую РНК-полимеразу путем связывания с ферментом. Наиболее чувствительна к нему бактериальная РНК-полимераза. На организм животных этот антибиотик оказывает незначительное влияние. По механизму действия он резко отличается от актиномицина t). Следует указать на недавно открытое противовирусное действие рифамицина, в частности, он успешно используется при лечении трахомы, которая вызывается ДНК-содержащим вирусом. По-видимому, этот антибиотик найдет применение в лечении опухолей, вызываемых вирусами. Выяснены механизмы действия ряда других антибиотиков, применяемых при лечении тифозных инфекций. Так, хлорамфеникол оказывает ингибирующее влияние на пептидилтрансферазную реакцию (на стадии элонгации) синтеза белка в 70S рибосоме бактерий. На этот процесс в 80S рибосоме он не действует. Противоположное тормозящее действие на синтез белка в 80S (без поражения процесса в 70S рибосоме) оказывает циклогексимид, являющийся ингибитором транслоказы. Весьма интересен молекулярный механизм действия дифтерийного токсина. Он оказался наделен способностью катализировать реакцию АДФ-рибозилирования фактора элонгации (трансляционный фактор-2, TF-2). выключая тем самым его из участия в синтезе белка. Резистентность многих животных к дифтерийному токсину обусловлена трудностью проникновения токсина через мембрану клеток. Противотуберкулезные и антибактериальные антибиотики, в частности стрептомицин и неомицин, действуют на белоксинтезирующий аппарат чувствительных к ним -штаммов бактерий. Высказано предположение, что эти антибиотики вызывают ошибки в трансляции мРНК, приводящие к нарушению соответствия между кодонами и включаемыми аминокислотами; например, кодон УУУ вместо фенилаланина начинает кодировать лейцин -- в результате образуется аномальный белок, что приводит к гибели бактерий. Широко применяемые в клинике тетрациклины также оказались ингибиторами синтеза белка в 70S рибосоме (меньше тормозится синтез в 80S рибосоме). Они легко проникают через клеточную мембрану. Считается, что тетрациклины тормозят связывание аминоацил-тРНК с аминоацильным центром в 50S субчастице рибосомы. Возможно, что тетрациклины химически связываются с этим центром, выключая тем самым одну из ведущих стадий процесса трансляции. Пенициллины не являются истинными ингибиторами синтеза белка, однако их антибактериальный эффект связан с торможением синтеза гексапептидов, входящих в состав клеточной стенки. Механизм их синтеза отличается от рибосомального механизма синтеза белка. Эритромицин и олеандомицин тормозят активность транслоказы в процессе трансляции, подобно циклогексимиду, исключительно в 80S рибосомах, т. е. тормозят синтез белка в клетках животных. Следует еще раз подчеркнуть, что нарушение или выпадение любого звена, участвующего в синтезе белка, почти всегда приводит к развитию патологии, причем клинические проявления болезни будут определяться природой и функцией белка, синтез которого оказывается нарушенным (структурный или функциональный белок). Иногда синтезируются так называемые аномальные белки как результат действия мутагенных факторов и, соответственно, изменения генетического кода (например, гемоглобин при серповидно-клеточной анемии). Последствия этих нарушений могут выражаться в развитии самых разнообразных синдромов или заканчиваться летально. Следует отметить, что организм располагает мощными механизмами защиты: подобные изменения генетического аппарата быстро распознаются специфическими ферментами -- рестриктазами, измененные последовательности вырезаются и вновь замещаются соответствующими нуклеотидами при участии полимераз и лигаз. Дифтерийный токсин, поступая в кровь, вызывает общую глубокую интоксикацию. Он поражает преимущественно сердечно-сосудистую, симпатико-адреналовую системы и периферические нервы. Токсин дифтерии проявляет все свойства экзотоксина (термолабильный, высокотоксичный, иммуногенный белок, нейтрализуемый антитоксической сывороткой). Нативный токсин — полипептид с Мг около 72 000; его образуют фрагменты А (проявляет ферментативную активность) и В (взаимодействует с клеточными рецепторами, облегчая проникновение фрагмента А). Клетки всех чувствительных организмов способны рецептировать В-фрагмент и поглощать молекулу посредством эндоцитоза. В кислой среде эндосом (фаголизосом) дисульфидные связи, объединяющие оба компонента, разрушаются, фрагмент В взаимодействует с мембраной эндосомы, облегчая проникновение фрагмента А в цитоплазму. Последний устойчив к денатурации и длительно сохраняется в цитозоле. Механизм цитотоксического действия токсина дифтерии связан с модификацией белков через АТФ-рибозилирование. Подобным свойством обладают многие токсины, но лишь дифтерийный токсин имеет специфичную мишень — фактор элонгации 2 — трансферазу, ответственную за наращивание (элонгацию) полипептидной цепи на рибосоме. Дифтерийный токсин катализирует перенос АТФ-рибозы от цитоплазматического НАД к фактору элонгации 2, приводя к АТФ-рибозилированию гистидиновых остатков в молекуле фактора с необратимым блокированием элонгации полипептидной цепи (то есть любого белкового синтеза). Немодифицированный фактор элонгации 2 образует комплекс с ГТФ и тРНК, связывающийся с мРНК в эукариотических клетках, после чего возможно встраивание аминокислот в синтезируемую белковую молекулу. Токсин дифтерии ингибирует белковый синтез, в том числе и в миокарде, приводя к структурным и функциональным нарушениям, способным вызвать смерть больного. Результат действия токсина дифтерии на нервную ткань — демиелинизация нервных волокон, часто приводящая к параличам и парезам. Способность к токсинообразованию дифтерийной палочки Способность к токсинообразованию проявляют лишь лизогенные штаммы Corynebacterium diphtheriae, инфицированные бактериофагом (р-фаг), несущим ген fox, кодирующий структуру токсина дифтерии. Образование последнего наиболее выражено при вступлении бактериальной популяции в стадию отмирания. Переход умеренного фага в литическую форму мало влияет на синтезтоксина. Активность токсина дифтерии 1 ЕД Dim дифтерийного токсина равна наименьшей концентрации, убивающей морскую свинку массой 250 г на 4-5-е сутки (около 0,25-0,1 мкл). Для полученияанатоксина (ослабленного нагреванием при 40°С дифтерийного токсина) используют штаммPW-8.