Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / Биохимия / Ответы к экзамену по биохимии.pdf
Скачиваний:
7
Добавлен:
04.02.2024
Размер:
2.43 Mб
Скачать

триплеты не кодируют ни одной из аминокислот, их также называют нонсенс-кодоны. При вхождении этих кодонов внутрь рибосомы происходит активация белковых факторов терминации, которые последовательно катализируют:

1.Гидролитическое отщепление полипептида от конечной тРНК.

2.Отделение от П-центра последней, уже пустой, тРНК.

3.Диссоциацию рибосомы.

Источником энергии для завершения трансляции является ГТФ. Полирибосомы

По причине того, что продолжительность жизни матричной РНК невелика, перед клеткой стоит задача использовать ее максимально эффективно, т.е. получить максимальное количество "белковых копий". Для достижения этой цели на каждой мРНК может располагаться не одна, а несколько рибосом, встающих последовательно друг за другом и синтезирующих пептидные цепи. Такие образования называются полирибосомы.

Посттрансляционная модификация белков

К основным реакциям процессинга относятся:

1.Удаление с N-конца метионина или даже нескольких аминокислот специфичными аминопептидазами.

2.Образование дисульфидных мостиков между остатками цистеина.

3.Частичный протеолиз – удаление части пептидной цепи, как в случае с инсулином или протеолитическими ферментами ЖКТ.

4.Присоединение химической группы к аминокислотным остаткам белковой цепи:

фосфорной кислоты – например, фосфорилирование по аминокислотам Серину, Треонину, Тирозину используется при регуляции активности ферментов или для связывания ионов кальция,

карбоксильной группы – например, при участии витамина К происходит γ- карбоксилирование глутамата в составе протромбина, проконвертина, фактора Стюарта, Кристмаса, что позволяет связывать ионы кальция при инициации свертывания крови,

метильной группы – например, метилирование аргинина и лизина в составе гистонов используется для регуляции активности генома,

гидроксильной группы – например, присоединение ОН-группы к лизину и пролину с образованием гидроксипролина и гидроксилизина необходимо для созревания молекул коллагена при участии витамина С,

йода – например, в тиреоглобулине присоединение йода необходимо для образования предшественников тиреоидных гормонов йодтиронинов,

5.Включение простетической группы:

углеводных остатков – например, гликирование требуется при синтезе гликопротеинов.

гема – например, при синтезе гемоглобина, миоглобина, цитохромов, каталазы,

витаминных коферментов – биотина, ФАД, пиридоксальфосфата и т.п.

6.Объединение протомеров в единый олигомерный белок, например, гемоглобин, коллаген, лактатдегидрогеназа, креатинкиназа.

Шаперо́н — класс белка, восстановлении правильной структуры белка, а также комплексов.

главная функция которого состоит в нативной третичной или четвертичной образование и диссоциация белковых

79. Генетический код, его важнейшие свойства. Молекулярные механизмы развития мутаций, типы мутаций. Понятие о теломерах.

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств.

1.Триплетность.

2.Вырожденность или избыточность.

3.Однозначность.

4.Полярность.

5.Неперекрываемость.

6.Компактность.

7.Универсальность.

Молекулярный механизм мутаций

Мутации, связанные с изменением структуры молекулы ДНК, называются генными. Они представляют собой выпадение или вставку одного, или нескольких азотистых оснований, либо то и другое

одновременно, а также замену азотистых оснований. Последние описаны Э. Фризом (1963). Он различал два типа замен: транзиции и трансверзии.

При транзиции одно пуриновое или пиримидиновое основание заменяется соответственно другим пуриновым или пиримидиновым основанием:

Г- Ц

А - Т Трансверзии встречаются чаще транзиций. При трансверзии пуриновое

основание заменяется пиримидиновым и наоборот: Г - Ц Г- Ц А - Г А - Г

Ц - Г Г - А Т - А Ц - Г Все генные мутации приводят к изменению смысла кодона и к нарушению

считывания информации в цепи ДНК. Различают три типа таких изменений.

Миссенс-мутации, т.е. мутации, изменяющие смысл кодона, вследствие чего в белковую молекулу в момент ее синтеза вставляется другая аминокислота.

Нонсенс-мутации – образование бессмысленных кодонов, не кодирующих никакой аминокислоты (УАА – охра-мутация; УАГ –

амбер, или янтарная мутация; УГА – опал-мутация). Такие мутации приводят к обрыву чтения генетического текста и прекращению синтеза молекулы белка.

Миссенс- и нонсенс-мутации обычно происходят при замене азотистых оснований. К изменению смысла кодонов приводят и выпадения или вставки азотистых оснований. Все эти мутации возникают спонтанно и могут быть вызваны любыми мутагенными факторами среды.

Мутации сдвига чтения наблюдаются при выпадении или вставке нуклеотидов в цепи ДНК и вызывают смещение чтения генетического кода. При этом образуются бессмысленные кодоны, на которых чтение прерывается.

Теломе́ры — концевые участки хромосом.

80. Регуляция действия генов. Схема действия лактозного оперона Жакоба и Моно. Клеточная дифференцировка и онтогенез как результат действия генов. Гены «домашнего хозяйства» и гены адаптации. Роль гормонов в регуляции действия генов.

Лактозный оперон — полицистронный оперон бактерий, кодирующий гены метаболизма лактозы.

Регуляция экспрессии генов метаболизма лактозы у кишечной палочки была впервые описана в 1961 году учеными Ф. Жакобом и Ж. Моно. Бактериальная клетка синтезирует ферменты, принимающие участие в метаболизме лактозы, лишь в том случае, когда лактоза присутствует в окружающей среде и клетка испытывает недостаток глюкозы.

Лактозный оперон состоит из трех структурных генов, промотора, оператора и терминатора. Принимается, что в состав оперона входит также генрегулятор, который кодирует белок-репрессор.

Структурные гены лактозного оперона — lacZ, lacY и lacA:

lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,

lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.

lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетильную группу от ацетил-КoA на бета-галактозиды.

В начале каждого оперона находится специальный ген — ген оператор. На структурных генах одного оперона обычно образуется одна м-РНК, и эти гены бывают одновременно активны или неактивны. Как правило, структурные гены в опероне находятся в состоянии репрессии.

Дифференцировка – возникновение различий между клетками, тканями, органами. До 7 дня зигота тотипотентна, т.е. из любой её клетки можно вырастить целый организм или орган. После 7 дня тотипотентность теряется из-за дифференцировки. Все структурные клетки условно делят на 3 типа:

1)гены “домашнего” хозяйства – работающего во всех клетках организма;

2)гены, работающие в специализированных тканях;

3)гены, выполняющие 1-ну узкую функцию. Большинство генов многоклеточного организма работают только на определённых стадиях онтогенеза или в определённых тканях.

73.Переваривание и всасывание железосодержащих хромопротеинов. Особенности всасывания и обмена железа. Синтез гема и гемоглобина.

74.Распад гемоглобина и образование желчных пигментов. Отличительные свойства прямого и непрямого билирубина. Нормальные показатели желчных пигментов крови, кала и мочи. Нарушение пигментного обмена при желтухах, дифференциальная биохимическая диагностика различных типов желтух.

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина. Высвобождаемое железо может либо запасаться в клетке в комплексе с ферритином, либо выделяться наружу и связываться с трансферрином.

Ситуации, при которых в крови накапливается билирубин, в зависимости от причины делятся на три вида:

1.Гемолитические – в результате гемолиза при избыточном превращении гемоглобина в билирубин,

2.Печеночно-клеточные – когда печень не в состоянии обезвредить билирубин,

3.Механические – если билирубин не может попасть из печени в кишечник изза механического перекрытия желчевыводящих путей.

Так как в норме билирубин и его фракции находятся в крови в концентрации не более 20 мкмоль/л, то накопление билирубина в крови свыше 43 мкмоль/л ведет к связыванию его эластическими волокнами кожи и конъюнктивы, что