Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
geokniga-геодезия-попов-вн-чекалин-ви-2007.pdf
Скачиваний:
3632
Добавлен:
16.03.2015
Размер:
39.37 Mб
Скачать

Глава 15 ОСОБЕННОСТИ ТОЧНЫХ И ВЫСОКОТОЧНЫХ ИЗМЕРЕНИЙ

§ 138. Основные группы погрешностей измерений

Угловые измерения и геометрическое нивелирование являются наиболее массовыми видами геодезических работ при создании плановых и высотных Государственных геодезических сетей, а также при работах по созданию опорных сетей сгущения, которые выполняются разнообразными способами и методами от исходных пунктов высших классов. Кроме того, с появлением более совершенных и точных приборов для измерения расстояний значительный объем геодезических измерений выполняется светодальномерами в ли- нейно-угловых построениях и при создании сетей сгущения методом трилатерации. В процессе выполнения геодезических работ измеряют горизонтальные углы, углы наклона, зенитные расстояния, производится определение геодезических и астрономических широт, долгот и азимутов как при привязке исходных направлений, так и при ориентировании других направлений. Большой объем работ связан с передачей абсолютных высот на большие расстояния и пункты опорных сетей и сетей сгущения, высокоточным и точным определением горизонтальных и вертикальных смещений земной поверхности и инженерных сооружений, в том числе и подземных горных выработок.

Практически все из перечисленных задач требуют высокой точности измерений, которая определяет качество их решения и надежную интерпретацию данных. Точность измерений в конечном счете определяется характеристиками используемых приборов, а также особенностями методик производства работ. Специалист должен знать особенности геодезических приборов, правильно пользоваться ими, иметь представление об источниках возможных погрешностей и принимать своевременные меры по учету и ослаблению влияния этих погрешностей на результаты измерений.

Погрешности измерений подразделяют на три основные группы: личные, приборные (инструментальные) и погрешности, связанные с влиянием внешней среды. Кроме того, во всех указанных группах погрешности могут иметь не только закономерную случайную, но и систематическую составляющие.

Как указывалось выше (гл. 3), в большинстве случаев систематические погрешности устраняются весьма трудно, поэтому их необходимо исследовать и стремиться свести к минимальным значениям, либо, используя соответствующие методики и программы работ, перевести в группу случайных погрешностей. Например, сведение систематических погрешностей измерения горизонтальных углов или направлений из-за влияния центрирования теодолита и визирных целей может быть выполнено многократными измерениями угла (направлений) полными приемами с перецентрировкой прибора и визирных целей в каждом приеме.

365

Влияние случайных погрешностей ослабляется путем увеличения числа измерений одной и той же величины, конечно, с учетом минимизации затрат на производство работ при обеспечении их требуемого качества.

Личные погрешности возникают из-за несовершенства измерительной системы, в которую входит как само измерительное средство, так и сам наблюдатель. К этим погрешностям можно отнести погрешности визирования, погрешности совмещения делений лимба при различных освещенностях шкал, такие же погрешности отсчитывания по шкалам отсчетных микроскопов и др. В этой связи следует отметить, что совершенствование автоматизации процесса наведения, получения отсчетов направлений, по шкалам нивелирных реек и т.п. значительно могут снизить, а во многих случаях и исключить полностью влияние личных погрешностей. Существуют приборы, работу которых организует оператор (а не наблюдатель, как указывалось выше), который задает положение прибора на станции, а непосредственные измерения выполняются в автоматическом режиме: измерение углов, направлений, расстояний, превышений и т.п.

Приборные погрешности измерений определяются технологическими погрешностями сборки и установки отдельных деталей и узлов. К ним относятся погрешности хода фокусирующей линзы или фокусирующей системы зрительной трубы, коллимационная погрешность, люфты подъемных и наводящих устройств и отсчетных микроскопов, неравномерность нанесения штрихов лимбов и шкал, в том числе и шкал нивелирных реек, погрешности недокомпенсации визирной оси в приборах с компенсаторами, погрешности в изготовлении ампул цилиндрических установочнх уровней, люфты в осевых системах и мн.др.

Влияние внешней среды определяется возможными температурными воздействиями на узлы и детали приборов и штативов, горизонтальными и вертикальными перемещениями приборов, штативов, визирных целей, исходных (опорных) пунктов и промежуточных точек, вибрационными воздействиями на средства измерений, погрешностями смещения пузырька уровня в сторону Солнца, воздействиями ветровых нагрузок на приборы, цели и другие наблюдаемые объкты, воздействием боковой (горизонтальной) и вертикальной рефракции атмосферы, состоянием освещенности визирных целей и др.

Рассмотрим влияние основных погрешностей на результаты измерений горизонтальных углов, зенитных расстояний и превышений и, в первую очередь, воздействие атмосферной рефракции.

§ 139. Учет влияния рефракции атмосферы

Показатель преломления атмосферы (n) зависит от ее состояния: температуры, влажности, давления, скорости ветра, облачности, прозрачности и др. Эти показатели непрерывно изменяются во времени и пространстве, что приводит к флуктуациям показателя преломления атмосферы в каждой точке

366

на пути распространения светового луча или пучка световых лучей. Для оценки среднего показателя предомления атмосферы используется формула

n = 1+ 110,8 ×10− 6

æ

P

 

e ö

 

ç

 

 

- 0,14

 

÷ ,

(15.1)

T

2

 

 

è

 

 

T ø

 

где Т – абсолютная температура воздуха: T = (273 ,16 0

+ t 0C) ; Р – давление в

мм рт.ст. (1 мм рт.ст. = 133,3 Па); е – давление водяных паров, мм рт.ст. Колебания изображения цели в основном являются следствием Турбу-

лентности воздуха различной температуры. Эти колебания возрастают при приближении визирного луча к поверхности земли, а также при увеличении разности температур земли (почвы) и воздуха.

Под рефракцией света понимают искривление световых лучей в одной и той же среде, определяемое неодинаковой оптической плотностью среды, т.е. различным показателем преломления на различных участках атмосферного слоя.

Существует несколько видов рефракции: астрономическая, спутниковая и земная. При астрономической рефракции цель находится в бесконечности, при этом визирный луч проходит всю толщу атмосферы. При спутниковой рефракции цель находится в околоземном пространстве, при земной рефракции – на земной поверхности.

При астрономической рефракции искажаются (уменьшаются) зенитные расстояния светил. При расчетах величины угла рефракции учитывается вся толща атмосферы. Угол астрономической рефракции зависит от зенитного расстояния. Для зенитных расстояний, например, до 50о – 60о угол астрономической рефракции изменяется от 0" до 1,5', т.е. составляет весьма большую величину при точных и высокоточных измерениях зенитных расстояний.

Спутниковая рефракция определяется изменениями показателя преломления атмосферы для электромагнитного излучения соответствующей длины волны (длина волны несущей частоты примерно равна 20 см) и, кроме того, сравнительно быстрым перемещением спутника относительно приемников излучения. При этом разные части атмосферы (тропосфера, стратосфера, ионосфера, магнитосфера и др.) оказывают различное влияние на прохождение тех или иных волн, которое весьма сложным способом учитывается при определении координат точек местности.

 

Атмосфера является оптически

 

неоднородной средой. Луч из точ-

 

ки А в точку В (рис. 15.1) проходит

 

не по прямой линии, а по сложной

 

кривой А-1-2-…-n-В, в результате

 

чего точка В наблюдается по каса-

 

тельной АВ' к кривой рефракции.

 

Мерой рефракции является угол ρ.

Рис. 15.1. Атмосферная рефракция

Проекция r полного угла ре-

 

фракции на вертикальную плос-

 

кость называется углом вертикаль-

367

ной рефракции или вертикальной рефракцией, а проекция δ полного угла рефракции на горизонтальную плоскость называется углом боковой (горизонтальной) рефракции или боковой рефракцией. Величина вертикальной рефракции на 1-2 порядка больше, чем величина боковой рефракции. При расстояниях, например, между точками в 10-20 км вертикальная рефракция может составлять 2'-3', а боковая – примерно 10".

Рефракция света значительно осложняет высокоточные и точные измерения и в настоящее время, при существующих точных и высокоточных при -борах, практически и определяет точность измерений. Вертикальная рефракция оказывает влияние при измерениях зенитных расстояний, при нивелировании с разностями плеч, а также и в разных неоднородных средах для двух направлений на рейки даже при абсолютно одинаковых плечах на станции. Боковая рефракция влияет на точность измерения направлений и горизонтальных углов.

Для оценки угла рефракции разработаны специальные приборы, рефрактометры. В основу принципа их работы заложена идея Нэбауера: измерение малого угла дисперсии между двумя лучами различных длин волн и исполь -зование этого значения для вычисления по установленным функциональным зависимостям угла рефрации. Однако испытания рефрактометров показали, что уже при расстояних более 2 км они дают неприемлемо большие по -грешности из-за значительных флуктуаций атмосферы. На долю рефракции при измерениях в сетях 1 и 2 класса (расстояния от 7 до 25 км) приходится 0,4"-0,5" при точностях измерений 0,6"-0,8". Т.е. угол рефракции следовало бы определять в нескольких точках по каждому из направлений, что, вообще говоря, практически осуществить не представляется возможным.

Разработан другой путь учета и ослабления действия атмосферной ре -фракции. Основные положения методики измерений состоят в следующем.

1.Выполнять измерения направлений, углов и превышений при хорошей

иудовлетворительной видимости на спокойные, либо слегка колеблющиеся изображения визирных целей и реек.

2.В солнечные дни не использовать время, близкое к заходу и восходу Солнца.

3.Наблюдения выполнять в разные дни в утренние и вечерние часы.

4.Наблюдения строить по строго симметричной программе во времени относительно точек изотермии (см. далее) и выводить средние значения

измеренных величин по вечерним и утренним наблюдениям.

Установлено т.н. «выгоднейшее время наблюдений», когда колебания изображений (целей) незначительны, либо вообще практически отсутствуют. Такое явление наступает утром и вечером, когда в слое воздуха на определенной высоте визирного луча над поверхностью земли создается состояние, наиболее близкое к изотермии.

Момент изотермии характеризуется практически одновременным переходом через ноль радиационного баланса и вертикальных градиентов температуры воздуха (рис. 15.2). Радиационный баланс определяется разностью между поглощенной поверхностью земли (почвой) и излученной ею радиа-

368

цией. На рисунке приведена примерная схема изменения для летнего периода радиационного баланса и градиентов температуры для широты 52о-55о.

Рис. 15.2. Графики радиационного баланса и градиентов температуры

Отрезок времени, в котором наблюдается изотермия воздуха, сравнительно короткий. Например, летом, в ясную и жаркую погоду, он равен примерно 0,5 часа. В холодную и пасмурную погоду, а также в северных широтах и в горной местности, он может достигать даже нескольких часов.

Для ослабления действия рефракции утренние измерения углов следует начинать через час после восхода Солнца и продолжать их не более 1,5 часов. Вечерние измерения необходимо заканчивать за час до захода, а начинать их – за 2-2,5 часа до захода, т.е. продолжительность измерений составляет всего 1-1,5 часа. Геометрическое нивелирование рекомендуется начинать через 0,5 часа после восхода Солнца и продолжать примерно 2 часа до появления заметных колебаний изображения реек, а вечерние (летом) начинать примерно в 17 часов местного времени и заканчивать за 0,5 часа до захода. В пасмурную погоду период наблюдений «после восхода» и «до захода» может быть увеличен, но в любом случае наблюдения следует прекращать при ухудшении видимости и появлении заметных колебаний целей.

Когда на высоте визирного луча наступает изотермия воздуха, то боковая рефракция практически становится равной нулю.

Суточное вращение Земли и движение ее вокруг Солнца вызывает непрерывное изменение метеорологических параметров. В связи с этим рефракция также испытывает суточный и годовой ход, а следовательно суточный и годовой ход испытывают и зенитные расстояния, горизонтальные направления и углы, азимуты, длины сторон, измеренные свето- и радиодальномерами, превышения.

369