
- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление

§14. Система высот
В§ 9 и § 12 были рассмотрены т.н. плановые системы координат, географические и прямоугольные, определяющие положение любой точки на поверхности земного эллипсоида, либо референц-эллипсоида. Для получения
полной информации о положении точки на физической поверхности Земли используется третья координата – высота.
За начало отсчета высот принимается средний уровень Балтийского моря, являющегося основной уровенной поверхностью, совпадающей с поверхностью геоида. Положение среднего уровня Балтийского моря определено в результате многолетних наблюдений и отмечено на футштоке на водомерном посту в г. Кронштадте.
Футшток – рейка с делениями, укрепленная отвесно на берегу так, чтобы обеспечивалась возможность отсчитывания по ней положения поверхности воды, находящейся в спокойном состоянии. Кронштадтский футшток – черта на медной пластине, вмонтированной в гранитный устой Синего моста Обводного канала в г. Кронштадте. Первый футшток был установлен во времена правления Петра I, и в 1703 г. начались регулярные наблюдения за уровнем Балтийского моря. Вскоре футшток был разрушен и только с 1825 г. (и до настоящего времени) были возобновлены регулярные наблюдения. В 1840 г. гидрографом М.Ф.Рейнеке была вычислена высота уровня Балтийского моря и зафиксирована на гранитном устое моста в виде глубокой горизонтальной черты. С 1872 г. эта черта принята за нулевую отметку при вычислении высот всех точек на территории государства. Кронштадский футшток неоднократно видоизменялся, однако положение его основной отметки при изменениях конструкции сохраняли прежней, т.е. определенной в 1840 г.
Положение точки определяется расстоянием от нее по линии направления силы тяжести до основной уровенной поверхности (рис. 2.14). Это расстояние называют абсолютной высотой точки.
Рис. 2.14. Система высот.
Абсолютные высоты H могут быть положительными (для точек, находящихся в нашем представлении выше уровня Балтийского моря), и отрицательными – для точек, находящихся ниже уровня Балтийского моря. Например, абсолютные высоты точек А и В – положительные, а абсолютная высота точки С – отрицательная.
34
Разность абсолютных высот двух точек называется относительной
высотой или превышением, обозначаемым буквой h: |
|
h = H A − H B . |
(2.14) |
Превышение одной точки над другой также может быть положительным и отрицательным. Если абсолютная высота точки А больше абсолютной высоты точки В, т.е. находится выше точки В, то превышение точки А над точкой В будет положительным, и наоборот, превышение точки В над точкой А – отрицательным.
Пример 2.6. Абсолютные высоты точек А и В : НА = +124,78 м; НВ = +87,45 м. Найти взаимные превышения точек А и В.
Решение.
Превышение точки А над точкой В hА(В) = +124,78 – (+87,45) = +37,33 м. Превышение точки В над точкой А hВ(А) = +87,45 – (+124,78) = - 37,33 м.
Пример 2.7. Абсолютная высота точки А равна +124,78 м. Превышение точки С над
точкой А равно hC(А) = - 165,06 м.
Найти абсолютную высоту точки С.
Решение.
По формуле (2.14) абсолютная высота точки С равна НС = НА + hC(А) = +124,78 + +(- 165,06) = - 40,28 м.
§ 15. Условные знаки топографических карт и планов
На топографических планах и картах объекты местности изображают определенными условными знаками.
Различают следующие основные виды условных знаков: масштабные (контурные), внемасштабные, площадные, линейные условные знаки, а также пояснительные надписи и подписи.
Масштабные условные знаки применяют для изображения предметов местности (ситуации), которые могут быть изображены в масштабе данной карты или плана. Плановое положение точек объекта в этом случае на изображении соответствует их плановому положению на местности.
Внемасштабные условные знаки применяют для таких контуров и объектов, которые не могут быть выражены в данном масштабе, поскольку их размеры меньше графической точности построения изображения. За положение объекта в этом случае принимают одну его точку (или точки линии), являющуюся, обычно, центром фигуры условного обозначения (круг, квадрат, прямоугольник, осевая линия знака, изображающего, например, дорогу и т.п.).
Следует заметить, что в зависимости от масштаба изображения одни и те же объекты могут изображаться как масштабными, так и внемасштабными условными знаками. При изображении, например, дороги в масштабе 1:500, ширина которой равна 10 м, используется масштабный знак (две линии), расстояние между которыми на плане будет равно 20 мм, что значительно превосходит точность масштаба этого плана. При изображении той же дороги в масштабе 1:500000 требовалось бы нанести границы дороги на расстоя-
35
нии 0,02 мм, что невозможно. Вследствие этого дорога указанной ширины на карте масштаба 1:500000 изображается одной линией определенной ширины. При этом центральная осевая линия изображения в плане совпадает с ее положением на местности.
Площадные условные знаки используют для заполнения площадей объектов, которые выражаются в масштабе данного картографического изображения.
Линейными условными знаками показывают положение объектов линейного характера (дорожная сеть, гидрография, линии электропередач, линии телефонной связи и т.п.).
Пояснительные подписи используют для раскрытия качественной и количественной характеристики объектов, изображенных теми или иными условными знаками (характеристики мостов, дорог, населенных пунктов и т.д.). Так, например, подпись на дороге 12(15)А означает, что ширина ее проезжей части – 10 м, ширина дороги вместе с обочинами – 15 м, А – материал покрытия (асфальт, асфальтобетон).
Характеристика населенных пунктов по типу, политико-администра- тивному значению и численности населения передается размером и начертанием подписей их названия. Подпись, например, у населенного пункта Полетаево 320 МС означает, что в нем 320 домов, имеется Местный Совет.
В последнее время у подписи населенного пункта стали указывать не количество домов, а количество жителей в тысячах человек: Красный Куст 0,130 – 130 человек. Часто в скобках рядом с названием населенного пункта указывают специализацию хозяйства, например, АО Нива (зерн.) – Акционерное Общество «Нива» (зерновое хозяйство). В связи с тем, что названия органов местного управления в последнее время стали часто меняться, то на картах современных лет издания можно встретить разные аббревиатуры этих названий. Могут также измениться и обозначения совхоза, колхоза, а появиться, например, указанное выше обозначение – АО Нива (зерн.), вместо бывшего совхоза «Россия».
При изображении объектов на топографических картах и планах пользуются цветовым фоном. Контур растительности (леса, сады и пр.) закрашивается зеленым цветом различных оттенков, объекты гидрографии – синим, голубым, дороги шоссейные, автострады – желтым, бледно-красным или оранжевым цветом, рельеф – коричневым. Все остальные объекты изображают черным цветом.
Важное место на топографических планах и картах отводится шрифтам, которые передают не только смысловое значение подписей, но и служат средством отражения определенных сведений об объекте. Размер и наклон букв, их толщина дают информацию об административном значении пункта, численности жителей и т.п. Наклон букв в подписях названий рек указывает на их транспортное значение.
Совокупность условных знаков, применяемых при изображении объектов местности на картах и планах различных масштабов, является стандартной и обязательной к использованию и исполнению всеми государственными и коммерческими организациями, которые используют или составляют топографические карты или планы. Государственный стандарт на
36

условные знаки приводится в специальных изданиях «Условные знаки топографических карт» и «Условные знаки топографических планов» [39, 40 и др.]. Эти стандарты время от времени обновляются, при этом действие старых стандартов прекращается, и они запрещаются к использованию.
§ 16. Изображение рельефа на топографических картах и планах
Физическая поверхность Земли является весьма сложной для изображения поверхностью и состоит из совокупности различного рода неровностей, которые и определяют рельеф местности (рис. 2.15).
Рис. 2.15. Рельеф.
Размеры неровностей составляют от единиц до десятков и сотен метров и до нескольких километров. Названия неровностей, определяемые по их виду, размерам, характеру, весьма различны: гора, холм, курган, сопка,
лощина, долина, ущелье, овраг, бархан, увал и т.д. В большом числе случаев бывает затруднительно отнести ту или иную неровность к тому или иному по названию виду. С целью исключения неоднозначности в названиях неровностей в топографии условно приняты к обозначению только пять основных форм, которыми можно описать любые отдельные неровности и их совокупности. Два вида неровностей являются положительными (гора или
37

холм; хребет), два вида – отрицательными (лощина; котловина или яма) и один вид неровности, седловина, не относится к положительной или отрицательной форме, а является особой формой.
Для изображения рельефа местности на плоскости используется метод изогипс (или горизонталей), что поясняется на рис. 2.16. Представим себе какую-либо положительную форму рельефа, основание которой находится под водой, а вершина несколько выступает над поверхностью воды. Положим далее, что уровень воды удается понижать каждый раз на равный по высоте промежуток Δh. При этом каждый раз поверхность воды соприкасается с физической поверхностью указанной формы по линии, которая называется горизонталью. Если спроецировать ортогонально все полученные горизонтали на плоскость, то получим их систему, определяющую в таком виде приведенную форму рельефа.
Рис. 2.16. Основные формы рельефа
Горизонталью называется кривая замкнутая непрерывная линия, все точки которой имеют одинаковую абсолютную высоту.
Ступень Δh условно принятого нами понижения уровня воды называется
высотой сечения рельефа.
На рис. 2.16 показаны отдельные изображения основных форм рельефа, а их сочетания и сопряжения можно проследить на рис. 2.15.
Горой (холмом) будем называть видимую на изображении серию замкнутых горизонталей с указанием ската с помощью бергштрихов, либо с указанием подписи горизонтали (подписи ее абсолютной высоты), ориентированной к основанию, либо и того и другого вместе. Наиболее высокая точка горы называется вершиной, а основание – подошвой. На рис. 2.15 изображено три таких формы рельефа.
38
Скат – это кратчайшее в данном месте расстояние на плоскости между двумя соседними сплошными горизонталями. В общем случае расстояние между двумя соседними сплошными горизонталями называется заложением.
Обратной горе (холму) по изображению формой является котловина (яма), бергштрихи или подпись высоты горизонтали на которой также указывают направление к понижению формы. Котловина представляет собой чашеобразную форму. Нижняя часть котловины называется дном, верхняя часть – бровкой. На рис. 2.15 котловина заполнена водой.
Второй положительной формой является хребет. Хребет – это выпуклая складка на поверхности земли. На изображениях гор практически всегда можно найти части, представляющие собой хребты. По закруглениям горизонталей относительно малого радиуса, изображающих хребет, проходит воображаемая линия, называемая линией водораздела. От линии водораздела водные потоки, попадающие на хребет, разделяются в разные стороны. На рис. 2.15 подписаны только пять хребтов. Их здесь больше. Попробуйте отыскать такие же формы рельефа.
Вторая отрицательная форма, лощина, является обратной хребту формой. По закруглениям горизонталей относительно малого радиуса проходит воображаемая линия, которая называется линией водослива (тальвегом). Лощина представляет собой желоб. Реки, ручьи и т.п. текут по лощинам. Часто понижение, по которому текут реки, называют долиной. Такая форма, как овраг, произошла из лощины в результате разрушения ее склонов под воздействием внешних условий. На рис. 2.15 указаны не все изображенные лощины. Определите дополнительно места, соответствующие указанным формам рельефа.
Седловина – это сложная форма, образованная в виде поверхностей сопряжения нескольких простых форм. Классическое изображение седловины – это сочетание направленных друг к другу линиями своих водоразделов хребтов, разделенных лощинами. При движении, например, с вершины одной горы на вершину другой необходимо будет проходить точку седловины, общую для всех сопрягающихся поверхностей форм. Это самая низкая точка при движении с хребта на хребет и самая высокая – при движении из одной лощины в другую. Найдите на рис. 2.15 еще одну седловину.
Характерными точками рельефа являются вершина горы, дно котловины, точка седловины, точки резкого перегиба рельефа. К характерным линиям рельефа относятся линии водораздела и водослива.
Метод горизонталей нельзя применить для изображения мест с весьма резкими изменениями высоты: обрывов, оврагов, промоин, гребней, трещин в поверхности земли и т.п. Также невозможно и передать на плоскости микроформы рельефа: кочковатые поверхности, подвижные гряды песков, скалы-останцы, валуны, пещеры, уступы, карстовые воронки и т.п. Для их изображения применяют дополнительно специальные условные знаки.
Горизонтали естественных форм рельефа изображают на картах и планах коричневым цветом. Искусственные формы рельефа (карьеры, терриконы,
39

дамбы, насыпи и выемки по сторонам автомобильных или железных дорог и т.п.), созданные человеком, изображают черным цветом.
При изображении рельефа часть горизонталей подписывают значением абсолютной высоты (или условной высоты в местной системе высот), а каждую пятую горизонталь утолщают. В местах со сложным рельефом, создающим сложности с определением высот точек, наносят дополнительные полугоризонтали, которые проводятся на половине высоты сечения рельефа. Они представляют собой прерывистую линию и могут быть замкнутыми и незамкнутыми. Такое изображение имеется на рис. 2.15 в правой его части и на рис. 2.16 на форме «хребет». В некоторых случаях применяют для изображения рельефа даже четвертьгоризонтали или дополнительные горизонтали произвольной высоты, но с обязательным указанием ее высоты на карте.
Высота сечения рельефа определяется масштабом карты. Чем мельче масштаб карты, тем больше высота сечения рельефа на ней. Но, как видно из табл. 2.4, зависимость эта не совсем однозначная. Выбор того или иного сечения рельефа должен определяться еще и сложностью местности в высотном отношении, изображаемой на карте или плане соответствующего масштаба.
Таблица 2.4
Масштаб карты |
Высота сечения рельефа, м |
|||
1 : 2000 |
0,5 |
1 |
|
2 |
1 : 5000 |
0,5 |
1 |
2 |
5 |
1 : 10000 |
1 |
2,5 |
5 |
10 |
1 : 25000 |
2,5 |
5 |
|
10 |
1 : 50000 |
5 |
10 |
|
20 |
1 : 100000 |
|
20 |
|
|
1 : 200000 |
|
40 |
|
|
1 : 500000 |
|
100 |
|
|
1 : 1 000000 |
|
200 |
|
|
На одном листе карты применяется только одна высота сечения рельефа. Исключение представляет только карта масштаба 1:1000000, поскольку на этих картах изображаются значительные по размерам площади, которые одновременно могут содержать информацию как о горных местностях, так и о местностях со сравнительно спокойным рельефом. В связи с этим на картах
40