Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
geokniga-геодезия-попов-вн-чекалин-ви-2007.pdf
Скачиваний:
3640
Добавлен:
16.03.2015
Размер:
39.37 Mб
Скачать

перемещением поршня и моментом контакта жидкости с иглой. При изменениях положения колбы, что будет связано с вертикальным перемещением рабочего репера, контакт может наступить позже или раньше относительно исходного измерения. Такие системы позволяют использовать их и при больших перепадах высот между рабочими реперами, т.е. позволяют расширить диапазон измерений.

Микронивелирование используют на весьма малых базах – 1,0 – 2,0 м. В основном такие измерения выполняют для определения наклонов отдельных конструкций инженерных сооружений, технологического оборудования и т.п. Микронивелиры выпускаются только по заказу предприятия серией от одного до нескольких экземпляров. В конструкции микронивелира используют высокоточные цилиндрические или электронные уровни, а также приспособления с микрометрами и индикаторами часового типа.

Фото- и стереофотограмметрический способы заключаются в использовании для получения информации о деформировании объекта фотоснимков, получаемых с помощью специального фототеодолита в различных циклах наблюдений. Деформации могут определяться как в одной (вертикальной) плоскости (фотограмметрический способ), так и по трем координатам (стереофотографический способ). При деформациях объекта на снимках двух последовательных циклов фотографирования определяются взаимные смещения точек либо в вертикальной плоскости, либо в пространстве. Измерение смещений точек на снимках выполняют на специальных приборах – стереокомпараторах. Наивысшая точность измерения деформаций при тщательном выполнении измерений составляет 1,0 – 2,0 мм.

§ 133. Наблюдения за горизонтальными смещениями

Организация наблюдений за горизонтальными смещениями объектов намного сложнее, чем при наблюдении за вертикальными перемещениями. Чаще всего используют линейно-угловой, створный и стереофотограмметрический способы, прямые и обратные отвесы.

Стереофотограмметрический способ подобен рассмотренному способу при наблюдении за вертикальными смещениями.

Линейно-угловые построения используются для определения смещений по двум координатам (рис. 14.1): микролокальные сети триангуляции и трилатерации, комбинированные сети, сети полигонометрии, угловые и линейные засечки и др. Использование тех или иных сетей и способов определяется условиями измерений, характеристикой объекта и его сложностью, а также заданной точностью измерений. На рис. 14.1а показана схема линейно-угловых построений для регистрации оползневых процессов на карьере с некоторых базисов. При этом следует иметь в виду, что базисы сами могут смещаться, в связи с чем они должны входить в систему построений, опирающуюся на неподвижные исходные пункты. На рис. 14.1б показана схема микротриангуляции, в которой измеряют дополнительно расстояния, либо схема микротрилатерации, в которой дополнительно измеряют

351

углы. При небольших расстояниях между наблюдаемыми объектами обычно используют метод микротриангуляции.

В сетях микротриангуляции и полигонометрических ходах горизонтальные углы измеряют с точностью 0,5" – 2,0", расстояния – с относительной погрешностью менее 1:20000. Полигонометрические ходы должны опираться на неподвижные точки с известными координатами. Если имеется возможность выполнения азимутальной привязки, то ее выполняют. Азимутальная привязка обеспечивает надежный контроль измерений, а также позволяет повысить точность исходных построений.

Рис. 14.1. Линейно-угловые построения

Створные наблюдения используют при определении горизонтальных смещений точек профильной линии склона, или горизонтальных смещений объектов, имеющих прямолинейную форму. Смещения в этом случае определяют только по одному направлению, перпендикулярному линии створа.

Разность значений текущего и исходного положения точки сооружения называют нестворностью. Нестворность может быть определена как по отношению к начальному (исходному) циклу наблюдений, так и при сравнении положения точки в двух любых циклах.

Створную линию задают либо стальной струной, концы которой закрепляют на неподвижных опорных реперах, либо оптическим способом, используя в качестве линии створа визирную ось зрительной трубы теодолита, нивелира и др. При оптическом задании створа прибор центрируют над неподвижным опорным репером, а на другом конце линии, также над опорным репером, центрируют визирную марку (цель).

Чаще всего при измерениях используют способы подвижной марки и малых углов.

Рис. 14.2. Створные способы а) способ подвижной марки; б) способ малых углов

352

Способ подвижной марки сравнительно легко реализуется струнным или оптическим методом. В исходной точке А (рис. 14.2 а) центрируют прибор (теодолит, нивелир и др.), имеющий зрительную трубу большого увеличения (более 30Х), и визируют им на точку В другого конца створа. В исследуемой точках 1 и 2 устанавливают подвижную марку с горизонтальным отсчетным устройством (шкалой). В разных циклах наблюдений исследуемая точка будет смещаться относительно неподвижной линии створа, в результате чего по шкале марки будут наблюдаться отсчеты, разность которых в сопоставляемых циклах наблюдений определит величину нестворности.

Малые углы α (рис. 14.2 б) характеризуют положение исследуемой точки относительно линии створа. Зная величину угла и расстояние от прибора до наблюдаемой точки, можно вычислить значение ƒ, определяющее отклонение точки от створа:

или для малых углов –

f = Stg α

(14.1)

= Sα РАД ,

(14.2)

f

где αРАД – значение малого угла в радианах.

 

В этом случае горизонтальное перемещение

Г точки в разных циклах 1 и

2 определится по формуле

S α = S(α 2 − α 1 ) .

(14.3)

Г =

В зависимости от длины створной линии, условий измерений и др. наблюдения за горизонтальными смещениями выполняют по различным схемам: общего, частного и последовательного створов (рис. 14.3).

Рис. 14.3. Схемы определения нестворности точек а) общий створ; б) частные створы; в) последовательные створы

В схеме общего створа нестворности всех точек определяют относительно одной исходной линии АВ. В схемах частных створов может использоваться следующая программа измерений: нестворность точки 1 определяется относительно створа А-2, точки 2 – относительно створа 1-3, точки 3 – относительно створа 2-4, точки n – относительно створа (n – 1) – В. В схеме

353

последовательных створов нестворность точек 1 и 3, например, определяется относительно створа АВ, а точки 2 – уже от створа 1-В, далее, точки 10 - от створа А-В, а точки 11 – относительно створа 10 – В.

§ 134. Наблюдения за кренами

Крен относят к деформациям сооружений башенного типа, у которых линейный размер основания значительно меньше высоты сооружения.

Практически крен здания можно определить по значениям неравномерных вертикальных перемещений его точек, выбранных по углам. Число точек должно быть не меньше трех. Предположим (рис. 14.4), что в двух соседних циклах наблюдений произошли неравномерные вертикальные перемещения точек 1, 2, 3 и 4 (знак «минус» указывает направление перемещения вниз). Т.е. общая осадка отрицательная, при этом перемещения точек 1 и 2 больше, чем точек 3 и 4 примерно на 1,5 - 2,0 мм. Построим в изолиниях перемещения точек с сечением через 0,5 мм. Структура изолиний показывает, что крен здания происходит практически в направлении поперечной оси. Если получить максимальную разность осадок ( - 1,9 мм), то

можно вычислить и угол наклона ν сооружения в межцикловый период

tgν =

(14.4)

МАКС

а

где МАКС – максимальная разность осадок; a – размер сооружения в направлении максимального крена.

Можно вычислить также и линейное отклонение t верха здания от вертикали, зная высоту Н сооружения, по формуле

Рис. 14.4. Определение крена фундамента

(14.5)

t = Нtg ν

Для малых значений углов в формулах (14.4) и (14.5) тангенс угла можно заменить на угол, выраженный в радианной мере.

Для других сооружений, не относящихся к башенным, подобные расчеты могут быть применены при определении завалов и перекосов.

Большое применение для определения крена сооружений находят способы вертикального проектирования (рис. 14.5). В простейшем случае могут использоваться нитяные отвесы с регистрацией их перемещений (острия отвеса) по линейной шкале или квадратной палетке. В последнем случае значение крена может быть определено по отношению к выбранным осям сооружения.

354

Рис. 14.5. Определение крена башенных сооружений а) способ вертикального проектирования; б) с помощью теодолита

Вертикальная нить отвеса может быть воспроизведена оптическим способом с помощью специального прибора вертикального проектирования (рис. 14.5.а), визирная ось которого устанавливается принудительно или автоматически в вертикальное положение. Прибор центрируют непосредственно у основания сооружения, либо внутри него, если позволяют условия наблюдений, и отклонение верха сооружения от вертикали в двух направлениях регистрируют по квадратной палетке с миллиметровыми или двухмиллиметровыми делениями, наблюдаемой в зрительную трубу прибора. Палетка размещается в верхней части сооружения.

Вертикальное проектирование может быть осуществлено по схеме, изображенной на рис. 14.5 б. На местности в точках А и В оборудуют станции, на которых центрируют теодолит. Визирные оси теодолита практически перпендикулярны друг другу и направлены вдоль осей сооружения. Расстояния от теодолита до сооружения выбирают с учетом высоты башни – примерно 1,5 – 2,0 высоты. На стене сооружения на его основании закрепляют шкалы Ш1 и Ш2 с миллиметровыми делениями, а в верхней части отмечают или устанавливают точки, на которые выполняют визирование. В процессе измерений получают отсчеты ао и bо в начальном и а1 и b1 в текущем циклах. Разности отсчетов а и b и их знаки указывают величину отклонения верха сооружения и направление этого отклонения.

Часто сооружение бывает недоступно для непосредственной работы у его основания. В таких случаях используют способ горизонтальных углов, который заключается в разбивке двух опорных пунктов на взаимно перпендикулярных осях сооружения и измерении горизонтального угла между направлениями на опорные пункты и направлениями на точки 1 и 2, находящиеся в верхней части сооружения (рис. 14.6). При известных расстояниях S разности горизонтальных углов для каждой из точек характеризуют перемещение исследуемых точек в направлениях, перпендикулярных соответствующей визирной оси. По формулам малых углов можно определить линейные

355