
- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление
§124. Разбивочные работы при проведении геологической разведки
В состав работ по перенесению в натуру проектного положения разведочных горных выработок и пунктов геофизических наблюдений входят следующие процессы: рекогносцировка местности с целью нахождения имеющихся пунктов Государственной геодезической и нивелирной сетей; составление рабочего проекта сгущения геодезической сети и проекта разбивочных работ; создание на местности опорной сети или рабочего обоснования для выполнения работ по разбивке и привязке точек и объектов геологических наблюдений; перенесение на местность проектного положения точек геологических наблюдений; привязка пройденных выработок и нанесение их на картографические материалы.
Характер производства разбивочных работ на стадиях их проектирования и исполнения определяется, в основном, расположением на местности (на исследуемой площади) геологоразведочных объектов (разведочных буровых скважин на линиях, шурфов, канав, траншей и др.). Часто точки геологических исследований определяются специалистами геологами по факту, без составления проекта. В этом случае необходимость в производстве разбивочных работ для указанных точек отпадает, а выполняется только привязка уже фактически пройденных выработок.
Из-за сложности условий разведки, определяемых характером местности, фактическое положение геологоразведочной выработки может значительно отличаться от ее проектного положения, зафиксированного на местности на стадии разбивочных работ. Например, из-за невозможности установки бурового станка в запроектированной точке, а также и по другим причинам технического характера.
При перенесении в натуру точек горных выработок и пунктов геофизических наблюдений производят построение точек, ломаных линий, а также системы параллельных линий. В связи с этим на местности отмечаются как места постановки геофизического или бурового оборудования, центры Шурфов, шахт, так и оси штолен, канав, траншей и т.п. Оси размечают с частотой 10 м соответствующими пикетными точками.
На рабочий разбивочный чертеж наносят используемые пункты геодезической сети и точки сетей местного значения, разведочные линии и профили
суазанием мест заложения разведочных точек и линий, величин дирекционных и, при необходимости, горизонтальных углов и длин линий, используемых при разбивках, а также контуры ситуации, если разбивка производится непосредственно от этих контуров.
На рис. 13.2 показан пример проекта разбивочных работ для выноса на местность двух разведочных линий буровой разведки (РЛ4 и РЛ5), линии
разведочных шурфов (РЛ6Ш), а также трех отдельных шурфов вне локализованных разведочных линий: Ш36, Ш37, Ш38.
Разведочные линии РЛ4, РЛ5 и РЛ6Ш выносятся на местность способом
створа от соответствующей исходной линии теодолитного хода Т7, Т8, Т9, Т10, Т11.
339

Рис. 13.2. Разбивочный чертеж
Створ линии РЛ4 задан положением точки М, находящейся на пересечении с линией теодолитного хода Т9-Т10 на расстоянии 35 м от точки Т10, и углом 103о20' от направления Т10-Т9. В точке М устанавливают теодолит и строят им створ в разных направлениях. Затем на расстоянии 11 м от точки М определяют положение скважины №144 и далее, через 20 м, положение по створу остальных скважин. В другом направлении – на расстоянии 9 м от точки М находят положение скважины № 145 и по створу – положение остальных скважин через установленный шаг.
Аналогично выносят РЛ5 и РЛ6Ш: РЛ5 – разбивкой створа от точки N находящейся на расстоянии 10 м от точки Т8, под углом 81о к линии Т8-Т9: РЛ6Ш – разбивкой створа в точке К на линии Т9-Т10 под углом к ней в 10о30'. Расстояние между шурфами по линии – 30 м.
Шурф Ш36 выносится на местность способом полярных координат от линии Т9-Т10 (угол в точке Т9 53о30' и расстояние Т9-Ш36 41,5 м). Шурф Ш37 строят способом линейной засечки с точек Т8 и Т9 расстояниями 38 и 43 м. Шурф Ш38 – способом угловой засечки с двух базисов, Т9-Т10 и Т10-Т11, соответствующими углами.
Вынесенная в натуру точка закрепляется на местности колом длиной 0,5
– 1,0 м с записью на нем номера разведочной линии и номера разведочной точки, имеющих единую нумерацию по всей исследуемой территории. Вокруг точки делается окопка и при необходимости устанавливается опознавательный знак.
340
§125. Привязка геологоразведочных выработок
копорной геодезической сети
Привязка объектов геологических и геофизических наблюдений может быть выполнена всеми известными способами, рассмотренными ранее в гл. 7: способы геодезических засечек (прямой угловой и линейной), способ полярных и прямоугольных координат, способ створа др.
Часто с точек профильных линий привязку выполняют методом геодезических засечек, предложенным А.И.Дурневым. Этот метод целесообразно применять в местности, неблагоприятной для непосредственных измерений линий. Он основан на построении на местности по одной из разведочных линий ходовой линии, в вершинах которой измеряют углы между соседними ходовыми линиями и углы, образующиеся направлениями между ходовыми линиями и направлениями на горные выработки или буровые скважины, расположенные на соседних разведочных линиях. Таким образом, в данном методе реализуется способ прямой угловой засечки, при этом, как минимум, производится привязка всех выработок, находящихся на трех разведочных линиях, что значительно сокращает полевые работы. Взаимная видимость должна обеспечиваться только между смежными пунктами ходовой линии, а на точки соседних разведочных линий может быть только односторонняя видимость.
Вбольшинстве случаев опорная сетка создается не произвольно, а в процессе перенесения в натуру проектных точек горных выработок или буровых скважин. Проще обстоит дело с геофизическими профилями, поскольку геофизические приборы устанавливают непосредственно на вынесенную точку, т.е. точку опорной сетки. Следовательно, в этом случае нет необходимости выполнять работы по привязке точек геофизических наблюдений. Эти данные уже имеются в разбивочном чертеже для построения профильных линий.
Для разбивки точек геологических наблюдений вершина опорной сетки находится в непосредственной близи от искомой точки. Следовательно, привязку таких точек просто выполнить непосредственно мерным прибором (способами перпендикуляров и линейной засечки).
Влюбом случае, с целью сокращения полевых работ, целесообразно вынос проекта в натуру выполнять таким образом, чтобы, по возможности, уменьшить объем привязочных работ. Для каких-то точек вообще исключить необходимость привязки, для других – свести привязку к простейшим измерениям. В таком случае понятие «привязка» теряет свой первоначальный смысл и превращается в понятие «допривязка», характеризующееся фиксацией незначительных изменений в положении точек наблюдений.
341
Глава 14 НАБЛЮДЕНИЯ ЗА ДЕФОРМАЦИЯМИ ИНЖЕНЕРНЫХ
СООРУЖЕНИЙ
§ 126. Виды деформаций инженерных сооружений
Инженерные сооружения и земная поверхность испытывают различные деформации, которые возникают вследствие внешних воздействий при изменении природных условий, а также являются следствием деятельности человека. К деформациям объектов приводят факторы, влияющие на разупрочнение грунтов (обводнение или осушение территории, локальные изменения влажности грунтов на площадке размещения инженерного сооружения, неудовлетворительное состояние отвода атмосферной влаги, влияние морозного пучения увлажненных грунтов и др.). При проведении горных работ, строительстве тоннелей, коллекторов происходят опускания земной поверхности с находящимися на ней сооружениями, происходят и деформации самих горных выработок. Часто деформации вызываются карстовыми явлениями, воздействием вибраций от массивных механизмов, сейсмическими воздействиями от землетрясений. Опыт изучения деформаций, накопленный за несколько десятков лет, показывает, что их величина определяется от единиц миллиметров до десятков метров.
Под деформацией понимают изменение формы объекта (здесь – инженерного сооружения или земной поверхности). В результате постоянного давления массивного сооружения на грунт происходит сжатие грунта и смещение объекта в вертикальном направлении. Такое смещение называют осадкой. Обычно осадка носит затухающий характер и для вновь построенного сооружения достигает через некоторое время предельной величины. В результате воздействия различных факторов природного и искусственного происхождения может произойти коренное изменение структуры грунтов основания. В связи с этим возникает быстропротекающие во времени деформации, которые называют просадками. Как осадка сооружения, так и его просадка могут проявляться неравномерно по площади. Это положение возникает при неравномерных нагрузках на грунт, а также из-за значительно различающихся его свойств даже при равномерной нагрузке. Неравномерные деформации приводят к кренам сооружений, сдвигам, перекосам, прогибам, горизонтальным смещениям. Чаще всего такие деформации проявляются в виде трещин, разломов, призм откола на углах сооружений, в ослаблении несущих конструкций. Горизонтальные смещения сооружений часто наблюдаются в тех случаях, когда объект находится на склоне, либо вблизи него. В этом случае решающим может оказаться боковое давление грунта. Подобные деформации испытывают гидротехнические сооружения из-за бокового давления воды. Объекты башенного типа испытывают воздействия неравномерного солнечного нагрева и ветра, что приводит к их изгибам, кручению и наклону. Наклон в направлении продольной оси сооружения называют завалом, а в направлении поперечной оси – перекосом. Участок
342