
- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление

§ 85. Основные источники погрешностей геометрического нивелирования
На точность определения превышений влияют многочисленные факторы, среди которых основными являются: влияние кривизны Земли и рефракции атмосферы; невыполнение главного условия нивелира; погрешности отсчетов по шкалам реек; погрешности установки зрительной трубы; погрешности в нанесении делений шкал реек и др.
Рассмотрим влияние указанных погрешностей и факторов на точность нивелирования.
1. Влияние кривизны Земли.
На физической поверхности Земли на расстоянии L находятся точки А и В, превышение между которыми равно h (рис. 9.3).
Рис. 9.3. Погрешности нивелирования из-за влияния кривизны Земли, рефракции и невыполнения главного условия нивелира
Установим нивелир точно посредине между точками А и В и возьмем отсчеты по рейкам, полагая, что световой луч (1) в направлении визирной оси распространяется в атмосфере прямолинейно. Для правильных отсчетов по рейкам следовало бы потребовать, чтобы световой луч проходил по уровенной поверхности, определяемой высотой прибора, т.е. по пути (2). В этом
случае превышение между точками будет соответствовать истинному: |
|
hист = З2 – П2 |
(9.13) |
На самом деле мы имеем |
|
h1 = З1 – П1 |
(9.14) |
243

Очевидно, что для симметричной схемы погрешности в отсчетах по рейкам ∆З1 = З1 – З2 и ∆П1 = П1 – П2 , определяемые влиянием кривизны Земли, будут одинаковыми, поскольку LA = LB. Следовательно,
h = (З2 + З1 ) − (П2 + П1 ) = З2 − П2 |
(9.15) |
При нивелировании вперед (рис. 9.3 б) ∆З1 значительно меньше ∆П1, в связи с чем погрешность ∆П1 полностью входит в значение измеренного превышения.
Таким образом, при нивелировании из середины влияние кривизны Земли, как систематическая погрешность, исключается в разности отсчетов по рейкам.
Величина погрешности k из-за кривизны Земли в отсчете по рейке, находящейся на расстоянии L от нивелира, может быть оценена по формуле
k = |
L2 |
, |
(9.16) |
|
2R |
||||
|
|
|
где R – радиус Земли.
Указанная погрешность при нивелировании может быть определена практически с любой точностью с учетом эллиптичности Земли, т.е. с учетом параметров референц-эллипсоида Красовского. Данные вопросы рассматриваются подробно в курсе высшей геодезии.
2. Влияние рефракции атмосферы.
Визирные лучи (3), проходя в атмосфере через слои воздуха, имеющие разную плотность, искривляются, отклоняясь в сторону земной поверхности. Погрешность в отсчете, вызванная влиянием рефракции атмосферы, r = (З3 – З2 ), r = (П3 – П2), может быть оценена по приближенной формуле
r = 0,07 |
L2 |
(9.17) |
|
R |
|||
|
|
Если условия измерений стабильны для визирных лучей в направлениях А и В, то можно полагать, что при симметричной схеме измерений погрешность из-за рефракции атмосферы исключается в разности отсчетов, как и при влиянии кривизны Земли. Часто погрешности k и r объединяют и определяют общую погрешность влияния кривизны Земли и рефракции
f = 0,43 |
L2 |
(9.18) |
|
R |
|||
|
|
Приведем в качестве сравнительных характеристик значения погрешностей k и r и суммарной погрешности f для радиуса Земли R = 6371,11 км и различных расстояний L от нивелира до рейки (табл. 9.1)
|
|
|
|
|
|
|
|
Таблица 9.1 |
L |
10 |
50 |
100 |
200 |
300 |
400 |
500 |
1000 |
k |
0,0078 |
0,196 |
0,785 |
3,14 |
7,06 |
12,56 |
19,62 |
78,45 |
r |
0,0011 |
0,027 |
0,110 |
0,44 |
0,99 |
1,76 |
2,75 |
10,99 |
f |
0,0067 |
0,169 |
0,675 |
2,70 |
6,07 |
10,80 |
16,87 |
67,49 |
Как видно из этой таблицы, уже при расстояниях 100 м погрешность изза влияния кривизны Земли составляет почти 1 мм. Погрешность из-за
244
влияния рефракции атмосферы имеет знак, обратный знаку погрешности изза кривизны Земли, в связи с чем общая погрешность отклонения отсчета от истинного меньше, чем k.
При нивелировании из середины (при симметричной схеме) rЗ = rП , т.е. исключаются из значения полученного превышения, а при нивелировании вперед rЗ значительно меньше rП, что приводит к погрешности в определении превышения.
Таким образом, при нивелировании из середины влияние рефракции атмосферы, как систематическая погрешность, значительно ослабляется и во многих случаях исключается в разности отсчетов по рейкам.
3. Невыполнение главного условия нивелира.
Если в нивелире не выполняется главное условие, т.е. после установки нивелира в рабочее положение визирный луч (4) занимает не горизонтальное положение, а отклонен от него на угол i, то отсчеты по рейкам будут равны З4 и П4. Разность отсчетов (З4 – З1) и (П4 – П1) характеризуют погрешность изза невыполнения главного условия нивелира. Ее величина может быть оценена по формуле
u = i |
L |
, |
(9.19) |
|
ρ |
||||
|
|
|
где ρ = 206265".
При нивелировании из середины, при использовании симметричной схемы измерений, погрешности в отсчетах по рейкам из-за невыполнения главного условия нивелира будут одинаковыми и исключатся в разности отсчетов. При нивелировании вперед превышение будет содержать систематическую погрешность, если визирная ось зрительной трубы не будет при измерениях совпадать с горизонтальной плоскостью.
Таким образом, при нивелировании из середины остаточным невыполнением главного условия нивелира можно пренебречь.
Вообще говоря, при любом неравенстве плеч на станции, если остаточная погрешность в превышении будет больше установленного допуска, схему измерений следует характеризовать как нивелирование вперед.
Рассмотрим пример оценки влияния погрешностей k, r и u на результат измерения превышения.
Пример 9.1. Оценка влияния кривизны Земли, рефракции атмосферы и невыполнения главного условия нивелира на результаты измерения превышений при разных плечах на станции.
Исходные данные. Предположим, что точки А и В находятся на расстоянии 100 м друг от друга. Неравенство плеч на станции равно 20 м (LA = 40 м; LB = 60 м). Угол i = 10". Заданная точность определения превышения mh = 1 мм. Требуется оценить возможность обеспечения указанной точности измерений при данном неравенстве плеч.
Решение.
По формуле (9.16)
k = kB − kA = |
L2B − L2A |
= 0,16мм |
|
2R |
|||
|
|
По формуле (9.17)
245

r |
= |
r |
− r = 0,07 |
L2B − L2A |
= 0,02мм |
|
|||||
|
B |
A |
R |
|
|
|
|
|
|
|
По формуле (9.19)
u = uB − uA = ρi (LB − LA ) = 0,97 мм
Как следует из результатов оценки, при разности плеч в 20 м практически можно пренебречь влиянием рефракции атмосферы, влияние кривизны Земли можно считать пренебрегаемо малым, а вот невыполнение главного условия нивелира вызывает погрешность того же порядка, что и заданная точность измерения превышения.
В таких случаях необходимо оценить допустимую величину разности плеч на станции, при которой погрешность из-за невыполнения главного условия составляла бы 1:3 ...
1:5 от заданной (допустимой) погрешности измерений, т.е. была бы пренебрегаемо малой. Примем ∆u = 0,2mh = 0,2 мм. Тогда
L |
|
= (L |
|
− L |
|
) = |
|
ρ |
≈ 4м |
|
ДОП |
B |
A |
u i |
|||||||
|
|
|
|
|
Очевидно, что при такой разности плеч погрешности из-за влияния кривизны Земли и рефракции атмосферы практически будут равны нулю.
4. Погрешность установки зрительной трубы.
Погрешность обусловлена неточностью установки пузырька цилиндрического уровня в нульпункте, а также недостаточной чувствительностью уровня к малым перемещениям трубы элевационным винтом.
Принимая погрешность установки пузырька уровня mτ = 2" (для контактных уровней), расстояние от нивелира до реек L = 100 м, определим значение вероятной погрешности в отсчете
D τ |
= |
mτ |
L = 0,96 мм |
(9.20) |
||
ρ |
||||||
|
|
|
|
|
||
Для превышения, определяемого разностью отсчетов, ∆h(τ) = |
|
∙0,96 мм = |
||||
2 |
=1,35 мм.
5.Погрешность отсчета по рейке - mтр.
Указанная погрешность определяется недостаточной разрешающей способностью зрительной трубы нивелира:
mтр |
60′′ L |
, |
(9.21) |
|
ρ Г х |
где Гх – увеличение зрительной трубы. Предположим, что для тех же условий
измерений Гх = 25х. Тогда mтр = 1,16 мм, а для превышения ∆h(тр) = 2 ∙1,16 мм = 1,64 мм .
6.Погрешность в отсчете из-за наклона рейки.
Очевидно, что чем больше наклон рейки, тем больше будет и погрешность отсчета. Предположим, что рейка отклонилась от вертикального положения на угол α (рис. 9.4). Визирный луч находится на высоте ао, соответствующей вертикальному положению рейки. Из-за наклона по рейке читается отсчет а. Погрешность из-за наклона рейки может быть получена по формуле
|
|
æ |
|
|
|
|
ö |
|
|
|
|
|
|
α |
2 |
, |
(9.22) |
||
D Н |
= ao |
ç |
1 + |
2 |
- 1 |
||||
|
|
ç |
|
|
ρ |
|
|
|
|
|
|
è |
|
|
|
|
ø |
|
|
246