- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление
делать», обычно в них приводятся указания «что делать». Вот здесь большую помощь Вам и может оказать своя библиотечка: справочники, учебная литература, методические указания, а также и Ваши записи (хотя бы на первых порах) на лекциях и практических занятиях по специальным дисциплинам.
В списке рекомендуемой литературы, приведенном в конце учебника, указана лишь небольшая часть изданий разных лет по различным направлениям инженерной геодезии, топографии и др., а также маркшейдерскому делу. Некоторые из них имеются в библиотеке вуза, другую литературу аналогичного содержания можно найти в букинистических магазинах.
Глава 2. ТОПОГРАФИЧЕСКИЕ КАРТЫ И ПЛАНЫ
§ 6. Влияние кривизны Земли на измеренные расстояния
При выполнении геодезических работ на сравнительно небольших территориях поверхность Земли можно принимать за плоскую, и измеренные расстояния на плоском изображении принимать равными соответствующим расстояниям на сферической поверхности. При измерениях значительных по величине расстояний необходимо учитывать влияние кривизны поверхности Земли.
Для простоты изложения примем, что Земля представляет собой шар радиусом R (радиус Земли, представляемой в виде шара, принимают равным 6371,11 км). Предположим, что по поверхности шара из точки А в точку В перемещается материальная точка (рис. 2.1), при этом расстояние S = АВ , которое пройдет эта точка по поверхности шара, равно
, (2.1) где α - центральный угол дуги АВ (в радианах).
15
Предположим, что точка движется по касательной в точке А к поверхности шара и пройдет по нему путь Sо = AB', соответствующий движению по поверхности шара на пути S. Для величины So можно записать:
|
|
|
|
So = Rtgα |
(2.2) |
|
|
|
Разность |
в пройденных |
путях |
|
ΔS = ( Sо - |
S ) = R ( tgα – α ) и будет |
|||
|
являться погрешностью в измерен- |
||||
|
ном расстоянии из-за кривизны |
||||
|
Земли. |
|
|
||
Рис. 2.1. Учет кривизны Земли |
|
|
Для малых значений углов α при |
||
чим |
разложении в ряд функции tg α полу- |
||||
Ra 3 |
|
|
|
|
|
S = |
, |
|
(2.3) |
||
3 |
|
||||
|
|
|
|
|
|
а после подстановки в выражение для |
S - |
|
|
||
S = |
S 3 |
, |
|
(2.4) |
|
|
|
||||
|
3R2 |
|
|
поскольку α = S / R.
Аналогично рассмотрим влияние кривизны Земли на определение
вертикальных расстояний. |
h , равная |
|
разности отрезков ОВ' и OВ = R, |
|||
Погрешность (отклонение) |
|
|||||
находится через принятые ранее параметры: |
|
|||||
|
h = |
S 2 |
|
|
(2.5) |
|
|
2R + |
h |
|
|||
или, ввиду малой разности S и S о при малых α и |
h, - |
|||||
h = |
S 2 |
|
|
|
(2.6) |
|
2R |
|
|
||||
|
|
|
|
Оценка возможных погрешностей при измерениях вертикальных и горизонтальных расстояний приведена в табл. 2.1.
Таблица 2.1
Измеренное |
|
|
|
|
|
|
|
|
расстояние S , |
0,1 |
1 |
2 |
5 |
10 |
50 |
100 |
200 |
км |
|
|
|
|
|
|
|
|
Абсолютная |
|
|
|
|
|
|
|
|
погрешность |
- |
- |
- |
0,001 |
0,008 |
1,03 |
8,2 |
65,7 |
S, м |
|
|
|
|
|
|
|
|
Относительная |
|
|
|
|
|
|
|
|
погрешность |
0 |
0 |
0 |
0 |
1/1250000 |
1/50000 |
1/25000 |
1/3000 |
ΔS/S |
|
|
|
|
|
|
|
|
Абсолютная |
|
|
|
|
|
|
|
|
погрешность |
0,001 |
0,078 |
0,314 |
1,96 |
7,8 |
196 |
785 |
3139 |
h, м |
|
|
|
|
|
|
|
|
16
Точность измерения линий в геодезических сетях высших классов определяется относительной погрешностью порядка 1:400000, что практически является соизмеримым для S = 10 км (и, конечно, более 10 км). До 10 км при измерении горизонтальных расстояний во многих случаях влиянием кривизны Земли можно пренебречь.
Совсем другая картина наблюдается при оценке погрешностей в вертикальных отрезках. Точность определения высот при геодезических работах, например, при топографической съемке, определяется величиной 5 см, т.е. уже для расстояний S = 1000 м необходимо учитывать кривизну Земли. Если же точность измерений выше, например 5 мм, то учет кривизны Земли следует начинать примерно для расстояний S = (250 – 300) м, что легко проверить обратным расчетом по формуле (2.6).
§ 7. Краткие сведения о картографических проекциях
Картографическое изображение – это представление исходной информации об объектах, а также о явлениях действительности, в графической, цифровой или другой форме на заданной поверхности (носителе информации) с применением системы специальных картографических условных знаков.
Очевидно, что на картах невозможно отобразить все детали объектов или явлений, поэтому на них показывают только типичные отличительные свойства в обобщенном виде с указанием связей, которые позволяют облегчить чтение карты и решение с помощью нее поставленных задач.
Картографическая проекция – это установленный способ изображения поверхности земного эллипсоида (референц-эллипсоида) на плоскости. Поверхность эллипсоида (шара, сфероида и т.п.) невозможно развернуть на плоскость без деформаций, в связи с чем при переходе на плоскость возникает сжатие или растяжение изображения, т.е. изменение его масштаба.
Под масштабом карты понимается отношение длины отрезка на изображении к длине соответствующего отрезка на местности, выраженном в тех же единицах измерения. Масштаб карты указывают в численном виде (1: 5 000; 1: 200 000 и т.п.) или именованном виде (в 1 см 250 м, т.е. в 1 см 25 000 см, или масштаб 1: 25 000).
Картографические проекции классифицируют по двум признакам: по характеру искажений углов (равноугольные) и площадей (равновеликие) и по виду координатной сетки параллелей и меридианов (азимутальные, конические, цилиндрические и др.).
Меридианом (рис. 1.4) является линия пересечения с поверхностью Земли плоскости, проходящей через ось РР вращения Земли. Меридиан, проходящий через определенную точку в Гринвичской обсерватории (Англия), называется Гринвичским (нулевым, начальным) меридианом.
17
Параллель получается от пересечения с поверхностью Земли плоскости, перпендикулярной к оси вращения Земли. Самая большая параллель называется экватором.
Равноугольные проекции передают без искажений углы геометрических фигур, а равновеликие не искажают площадей. Кроме того, существуют и произвольные проекции, которые не являются равновеликими или равноугольными, а используются для построения изображений в удобной для представления и чтения форме.
Азимутальные проекции (рис. 2.2) часто используются для изображения полярных областей. В нормальных азимутальных проекциях меридианы изображаются прямыми линиями, исходящими из точки северного или южного полюса, а параллели являются концентрическими окружностями, центром которых является точка полюса.
Рис.2.2. Азимутальная проекция.
Конические проекции (рис.2.3) получаются при проектировании поверхности эллипсоида на коническую поверхность, которая потом разворачивается в плоскость. Меридианы нормальных конических поверхностей являются прямыми линиями, а параллели – окружностями.
Рис. 2.3. Коническая проекция.
Как азимутальные, так и конические проекции, кроме нормальных могут быть поперечными и косыми. В этих случаях меридианы и параллели на них изображаются сложными кривыми.
18
Рис. 2.4. Проекция Меркатора.
Рис.2.5. Проекция Ламберта.
Из цилиндрических проекций наиболее распространенными являются
проекция Меркатора, изображенная на рис.2.4, проекция Ламберта (рис.2.5) и проекция Гаусса (1777 – 1855 гг.) – рис 2.7.
19