
- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление

винтами. После установки пузырька уровня на середину боковые винты снова зажать.
Поверка обязательно повторяется полностью по схеме, указанной в пп. 2 – 8.
Нивелир с компенсатором
Поверки 1 и 2 нивелиров с компенсатором аналогичны поверкам нивелиров с уровнем при зрительной трубе.
Поверка выполнения главного условия выполняется также двойным нивелированием с определением превышений и вычислением i и h.
Исправление главного условия (исправление положения визирной оси) выполняется вертикальным перемещением сетки нитей на полученное значение правильного отсчета. Для этого необходимо снять защитный колпачок с сетки нитей и боковыми юстировочными винтами (верхним и нижним) переместить сетку нитей на вычисленный отсчет.
§ 53. Приборы для линейных измерений
Приборы, используемые для линейных измерений, условно делят на три группы: механические, оптические и физико-оптические. Здесь речь пойдет о первых двух группах. О третьей группе, физико-оптических приборах, будет рассказано в гл. 6.
Механические приборы используются для непосредственного измерения расстояний. К ним относятся землемерные ленты, рулетки, тросы, длиномеры, инварные проволоки и др.
Землемерные ленты изготавливают длиной 20 м, 24 м и 50 м. Обозначают землемерные ленты буквами ЛЗ (лента землемерная) и ЛЗШ (лента землемерная штриховая). Изготавливают их из стальной полосы, которая наматывается на барабан. На обоих концах ленты имеются рукоятки, предназначенные для выравнивания полосы на поверхности земли и обеспечения необходимого натяжения при измерениях силой 10 кг.
|
|
|
Таблица 5.6 |
Длина рабочей части ленты, м |
Допустимые отклонения действительной |
||
|
длины от номинальной, ±мм |
||
|
1 класс |
2 класс |
3 класс |
5 |
- |
1,0 |
2,0 |
10 |
0,5 |
1,0 |
2,5 |
20 |
1,0 |
2,0 |
4,0 |
30 |
- |
3,0 |
5,0 |
50 |
2,0 |
5,0 |
7,0 |
75 |
- |
7,5 |
10,0 |
100 |
- |
10,0 |
14,0 |
Отдельные дециметровые |
0,2 |
0,3 |
0,4 |
деления и метровые интервалы |
|
|
|
Отдельные сантиметровые |
0,1 |
0,2 |
0,3 |
деления |
|
|
|
Отдельные миллиметровые |
0,05 |
0,1 |
0,2 |
деления |
|
|
|
135

Рулетки измерительные металлические выпускают нескольких типов: РС – самосвертывающаяся; РЖ – желобчатая; РЗ – в закрытом корпусе; РК – на крестовине; РВ – на вилке; РЛ – с грузом. У рулеток типа А начало шкалы сдвинуто от торца ленты, а у рулеток типа В начало шкалы совпадает с торцом ленты. По точности тип А – 1 и 2 класса, остальные – практически все класса 3 (табл. 5.6).
Из используемых в геодезических и маркшейдерских измерениях
длиномеров рассмотрим схему АД1М (рис. 5.22). |
|
|
|
Длиномер состоит |
из эталонированного |
|
диска 1 диаметром приблизительно 300 мм с за- |
|
|
крепленным соосно с ним счетным механизмом |
|
|
2 емкостью 1000 м и точностью отсчета 1 мм. |
|
|
Проволока 5 диаметром 0,8 мм с натяжением |
|
|
150 Н проходит через направляющие ролики 3. |
|
|
Для остановки движения проволоки служит |
|
|
тормозное устройство 4. Длина линии измеря- |
|
|
ется по предварительно |
протянутой между |
|
точками проволоке (рис. 5.23) прокаткой по ней |
|
|
длиномера. Измеряемая длина определяется по |
|
Рис. 5.22. Схема длиномера |
количеству оборотов мерного диска от шкал в |
|
АД1М. |
начале и конце измеряемой линии. Шкалы за- |
крепляются в соответствующих местах на мерной проволоке.
Длина одной линии не должна превышать 500 м, поскольку при больших длинах образуется значительная стрелка провеса проволоки.
После установки всей системы для измерений с помощью стремени 6 поднимают груз 5, чем обеспечивается необходимое натяжение проволоки 2. Длиномер переводят к шкале 3 в точке А, берут по ней и по счетному механизму отсчеты и затем прокатывают устройство 1 до шкалы 3 в точке В, где
Рис. 5.23. Схема измерения расстояния длиномером.
1 – длинномер; 2 – проволока; 3 – шкалы; 4 – динамометр; 5 – груз; 6 – стремя; 7 – штативы; 8 – раздвижные стойки-упоры; 9 – оптический центрир.
также берут отсчеты по шкале и счетному механизму.
136
Центрирование шкал в точках А и В выполняется с помощью специальных оптических центриров 9, которые позволяют проектировать изображение точки с поверхности земли на шкалу.
Таким способом можно измерять как горизонтальные линии, так наклонные и вертикальные расстояния (в наклонных и вертикальных горных выработках и тоннелях).
Инварные проволоки используют для высокоточного измерения базисов сравнительно небольшой длины, а также для выполнения точных разбивок и компарирования землемерных лент и рулеток. При этом до использования сами инварные поволоки эталонируют (компарируют) на специальном оборудовании в лабораторных условиях.
Жезлы представляют собой профилированные металлические линейки с делениями 0,1 мм и встроенным в корпус линейки термометром. В длину жезла вводят поправку за температуру, если она будет отличаться от температуры, при которой определялась длина жезла при компарировании. Номинальная длина жезлов стандартная – 2 и 3 м. Чаще всего применяются рейки Балла («Karl Zeiss») и жезл К070 (МОМ, Венгрия).
Жезлы используют для компарирования рулеток, их шкал, а также шкал и интервалов нивелирных реек различной точности и назначения, для точных разбивок базисов на местности.
Из оптических дальномеров наибольшее распространение получили
нитяный дальномер и дальномеры с переменной базой и переменным параллактическим углом. Схемы определения расстояний указанными дальномерами представлены на рис. 5.24.
Нитяный дальномер имеется практически во всех геодезических приборах (теодолитах, нивелирах). Сетка нитей зрительной трубы содержит две дальномерные нити, проекция которых через зрительную трубу в пространство предмета образует параллактический угол
β П = arctg |
a |
, |
(5.15) |
2 f |
|||
где а – расстояние между дальномерными нитями на сетке |
нитей; |
||
f – фокусное расстояние объектива зрительной трубы. |
|
При определении расстояний нитяным дальномером используют рейки МN с сантиметровыми делениями, по которым берут отсчет l (число видимых в зрительную трубу сантиметров между проекциями дальномерных нитей. VV – вертикальная ось вращения прибора; δ – расстояние от оси вращения прибора до центра объектива; р – расстояние между дальномерными нитями; Е – расстояние от переднего фокуса до рейки; s – общее расстояние от оси
вращения прибора до рейки. |
|
Дальномерное расстояние получают по формуле |
|
D = Kl + c , |
(5.16) |
где K = 100 – коэффициент дальномера; с = (δ + f ) – постоянная нитяного дальномера (для большинства приборов с близка к нулю).
137

Коэффициент дальномера зависит от величины параллактического угла и фокусного расстояния. В связи с тем, что при фокусировании на различные расстояния значение фокусного расстояния у зрительных труб с внутренней
Рис. 5.24. Схемы измерения расстояний оптическими дальномерами
а– с постоянным параллактическим углом; б – с переменным параллактическим углом;
в– с использованием нитяного дальномера
фокусировкой несколько изменяется, то и коэффициент К может оказаться не равным 100. Кроме того, и значение с может отличаться от нуля. Для повышения точности измерения расстояний выполняют поверку значения К с целью установления зависимости F = K (D) .
Для выполнения поверки на местности выполняют разбивку створной линии через 20 м (до 200 – 250 м) и последовательно определяют значения D20, D40, . . . , Dn по нитяному дальномеру для получения значений К20, К40 , …, Кn
Ki = |
Di( НОМИНАЛЬНО |
Е ) |
. |
(5.17) |
|
Di(ИЗМЕРЕННОЕ |
) |
||||
|
|
|
Составляют таблицу К(D), которую используют затем при измерениях интерполированием значений К для текущего расстояния.
Точность нитяного дальномера примерно составляет 1 : 300 от измеренного расстояния. Длинные линии целесообразно измерять короткими отрезками длиной 50 – 100 м. Точность измерений в этом случае может достигать 1: 600 и даже 1:1000.
Чаще всего нитяный дальномер используют при определении дальномерных расстояний до точек при тахеометрической съемке.
Дальномер с постоянным параллактическим углом (ДНР-5) представляет собой насадку к теодолитам Т15 и Т30. Он служит для измерения расстояния по вертикально установленной рейке, имеющей установочный уровень. Погрешность измерений составляет 1:2000. Диапазон измеряемых расстояний от 20 до 120 м. Измерительная рейка снабжена шкалой с делениями 2 см. Длина рейки 1,5 м.
Применяют ДНР-5 при прокладке теодолитных ходов и при съемке на пересеченной местности.
Насадка ДНР-5 автоматически приводит (редуцирует) наклонные до 10о расстояния к горизонту. Если наклон линий больше 10о, то в измеренное
138