
- •Предисловие
- •Глава 1. Вводная часть
- •§ 1. Предмет и задачи геодезии
- •§ 2. Краткие исторические сведения
- •§ 3. Единицы измерений, применяемые в геодезии
- •§ 4. Фигура и размеры Земли
- •§ 5. Содержание курса и рекомендации по его изучению
- •Глава 2. Топографические карты и планы
- •§ 6. Влияние кривизны Земли на измеренные расстояния
- •§ 7. Краткие сведения о картографических проекциях
- •§ 8. Общие сведения о топографических картах и планах
- •§ 9. Система географических координат
- •§ 10. Равноугольная поперечно-цилиндрическая проекция Гаусса-Крюгера
- •§ 11. Разграфка и номенклатура топографических карт и планов
- •§ 12. Зональная система плоских прямоугольных координат Гаусса
- •§ 13. Перевычисление координат из зоны в зону
- •§ 14. Система высот
- •§ 15. Условные знаки топографических карт и планов
- •§ 16. Изображение рельефа на топографических картах и планах
- •§ 17. Ориентирование
- •§ 18. Решение некоторых задач с использованием топографической карты
- •18.1. Измерение расстояний
- •18.2. Определение географических и прямоугольных координат
- •18.3. Ориентирование линий
- •18.4. Ориентирование карты на местности
- •18.5. Определение высот точек
- •18.6. Построение профиля
- •18.7. Построение линии заданного уклона
- •18.9. Определение площадей на топографических картах и планах
- •§ 19. Виды измерений
- •§ 20. Классификация погрешностей измерений
- •§ 21. Свойства случайных погрешностей
- •§ 22. Среднее арифметическое
- •§ 23. Средняя квадратическая погрешность
- •§ 24. Средние квадратические погрешности функций измеренных величин
- •§ 25. Обработка ряда равноточных измерений одной величины
- •§ 26. Об учете систематических погрешностей в измерениях
- •§ 27. Средняя квадратическая погрешность двойных равноточных однородных измерений
- •§ 28. Понятие о весе результата измерения
- •§ 29. Средняя квадратическая погрешность единицы веса и арифметической середины
- •§ 30. Обработка ряда неравноточных измерений одной величины
- •Глава 4. Государственные геодезические сети
- •§ 31. Назначение Государственных геодезических сетей
- •§ 32. Классы геодезических сетей
- •§ 33. Методы построения Государственных геодезических сетей
- •§ 34. Закрепление пунктов геодезических сетей
- •§ 35. Оценка точности построения опорных геодезических сетей
- •§ 36. Оценка точности построения сетей триангуляции
- •§ 37. Оценка точности построения звена полигонометрии
- •§ 38. Оценка точности построения сетей трилатерации
- •Глава 5. Геодезические приборы
- •§ 39. Классификация геодезических приборов
- •§ 40. Теодолиты
- •§ 41. Зрительные трубы
- •§ 42. Уровни и компенсаторы наклона
- •§ 43. Устройство теодолита
- •§ 44. Установка теодолита в рабочее положение
- •§ 45. Измерение горизонтальных углов и углов наклона
- •45.1. Способ приемов
- •45.2. Способ повторений
- •45.3. Способ круговых приемов
- •45.4. Измерение углов наклона
- •§ 46. Поверки теодолитов
- •§ 47. Нивелиры
- •§ 48. Устройство нивелира
- •§ 49. Нивелирные рейки
- •§ 50. Установка нивелира в рабочее положение
- •§ 51. Измерение превышений
- •§ 52. Поверки нивелиров
- •§ 53. Приборы для линейных измерений
- •§ 54. Гироскопические приборы
- •§ 55. Приборы для поиска подземных коммуникаций
- •Глава 6. Оптико-электронные геодезические приборы
- •§ 56. Общие замечания
- •§ 57. Краткие сведения о лазерных источниках излучения
- •§ 58. Электромагнитные дальномеры
- •§ 59. Светодальномеры
- •§ 60. Интерферометры
- •§ 61. Угломерные приборы
- •§ 62. Электронные тахеометры
- •§ 63. Электронные нивелиры
- •§ 64. Лазерные приборы
- •Глава 7. Построение съемочного обоснования
- •§ 65. Назначение и виды теодолитных ходов
- •§ 66. Прямая и обратная геодезические задачи на плоскости
- •§ 67. Взаимосвязь дирекционных углов с измеренными на местности горизонтальными углами
- •§ 68. Привязка теодолитных ходов
- •68.1. Способ примыкания
- •68.2. Прямая угловая засечка
- •68.3. Линейная засечка
- •68.4. Обратная угловая засечка
- •68.5. Комбинированные засечки
- •68.6. Задача П.А.Ганзена
- •§ 69. Особые системы теодолитных ходов
- •§ 70. Снесение координат с вершины знака на землю
- •§ 71. Определение элементов приведения и редукции
- •§ 72. Привязка теодолитных ходов к стенным геодезическим знакам
- •§ 73. Спутниковые методы определения координат
- •§ 74. Организация полевых работ при построении съемочного обоснования
- •74.1. Рекогносцировка и закрепление точек съемочного обоснования
- •74.2. Подготовка абрисов горизонтальной съемки
- •74.3. Поверки теодолита и нивелира
- •74.4. Компарирование мерных приборов
- •74.5. Измерение длин линий
- •74.6. Измерение горизонтальных углов и углов наклона
- •§ 75. Вычисления в разомкнутом теодолитном ходе
- •75.1. Предварительные вычисления
- •75.2. Обработка результатов угловых измерений
- •75.3. Вычисление приращений координат и оценка точности хода
- •75.4. Рекомендации к поиску вероятных погрешностей в измерениях и вычислениях при обработке ведомости координат
- •75.5. Уравнивание приращений координат и вычисление координат точек хода
- •75.6. Обработка ведомости высот
- •§ 76. Вычисления в замкнутом теодолитном ходе
- •76.1. Оценка точности угловых измерений и вычисление дирекционных углов
- •76.2. Вычисление приращений координат и оценка точности хода
- •76.3. Уравнивание приращений координат и вычисление координат точек хода
- •76.4. Обработка ведомости высот
- •§ 77. Обработка диагонального хода
- •Глава 8. Топографические съемки
- •§ 78. Назначение и виды топографических съемок
- •§ 79. Понятие о цифровой модели местности
- •§ 80. Теодолитная съемка
- •§ 81. Тахеометрическая съемка
- •§ 82. Составление плана местности по результатам топографической съемки
- •82.2. Нанесение на план точек съемочного обоснования
- •82.3. Нанесение на план результатов тахеометрической съемки
- •82.4. Рисовка рельефа и ситуации
- •82.5. Построение на плане ситуации по результатам теодолитной съемки
- •Глава 9. Нивелирные работы
- •§ 83. Способы и методы нивелирования
- •§ 84. Способы геометрического нивелирования
- •§ 85. Основные источники погрешностей геометрического нивелирования
- •§ 86. Техническое нивелирование
- •§ 87. Трассирование
- •§ 88. Расчет и разбивка главных точек кривых на трассе
- •§ 89. Нивелирование поперечных профилей
- •§ 90. Обработка результатов нивелирования трассы
- •§ 91. Построение профиля трассы
- •§ 92. Построение проектной линии
- •§ 93. Построение поперечного профиля и проектного полотна дороги
- •§ 94. Нивелирование площадей
- •Глава 10. Геодезические разбивочные работы
- •§ 95. Назначение и организация разбивочных работ
- •§ 96. Построение на местности проектного горизонтального угла
- •§ 97. Построение на местности проектного расстояния
- •§ 99. Способы разбивочных работ
- •§ 100. Расчет разбивочных элементов
- •§ 101. Разбивочные работы при трассировании
- •§ 102. Разбивка фундаментов инженерных сооружений
- •§ 103. Оценка точности разбивочных работ
- •Глава 11. Геодезические работы в строительстве
- •§ 104. Общие положения
- •§ 105. Краткие сведения об объектах строительства
- •§ 106. Геодезические работы при строительстве промышленных сооружений
- •§ 107. Геодезические работы при строительстве гражданских зданий
- •§ 108. Геодезические работы при строительстве дорог и мостовых сооружений
- •§ 109. Геодезические работы при планировании и застройке населенных пунктов
- •§ 110. Геодезические работы при строительстве подземных коммуникаций
- •§ 111. Геодезические работы при строительстве гидротехнических сооружений
- •Глава 12. Геодезические работы в подземном строительстве
- •§ 115. Горизонтальная соединительная съемка
- •115.2. Горизонтальная соединительная съемка через один шахтный ствол
- •§ 116. Вертикальная соединительная съемка
- •§ 117. Подземная горизонтальная съемка
- •§ 118. Подземная вертикальная съемка
- •§ 119. Геодезические разбивочные работы в подземном строительстве
- •§ 120. Задачи и содержание топографо-геодезических работ
- •§ 121. Точность геодезических работ
- •§ 122. Создание топографических карт и планов
- •§ 123. Разбивка геодезических сеток и профильных линий
- •§ 124. Разбивочные работы при проведении геологической разведки
- •§ 126. Виды деформаций инженерных сооружений
- •§ 127. Задачи наблюдений и организация работ
- •§ 128. Геодезические знаки и их конструкции
- •§ 129. Размещение геодезических знаков на инженерных сооружениях
- •§ 130. Точность измерения деформаций
- •§ 131. Периодичность наблюдений
- •§ 132. Наблюдения за вертикальными перемещениями
- •§ 133. Наблюдения за горизонтальными смещениями
- •§ 134. Наблюдения за кренами
- •§ 135. Наблюдения за деформациями земной поверхности
- •§ 136. Разработка методики наблюдений
- •§ 137. Обработка и анализ результатов наблюдений
- •Глава 15. Особенности точных и высокоточных измерений
- •§ 138. Основные группы погрешностей измерений
- •§ 139. Учет влияния рефракции атмосферы
- •§ 140. Высокоточное и точное геометрическое нивелирование
- •§ 141. Нивелирование I класса
- •§ 142. Нивелирование II класса
- •§ 143. Нивелирование III и IV классов
- •§ 144. Особенности точного и высокоточного нивелирования при наблюдениях за деформациями
- •§ 145. Высокоточные и точные угловые измерения
- •§ 146. Высокоточные и точные измерения в схемах микротриангуляции, микротрилатерации и короткобазисной полигонометрии
- •Глава 16. Уравнивание геодезических построений
- •§ 147. Основные задачи уравнительных вычислений
- •§ 148. Метод наименьших квадратов
- •§ 149. Классификация основных способов уравнивания
- •§ 150. Основные геометрические условия, возникающие в построениях
- •150.1. Условие фигуры
- •150.2. Условие горизонта
- •150.3. Условие суммы углов
- •150.4. Условие дирекционных углов
- •150.5. Условие сторон
- •150.6. Условие полюса
- •150.7. Условие координат
- •§ 151. Методы решения систем линейных нормальных уравнений
- •151.1. Способ последовательной подстановки
- •151.2. Способ матричных преобразований
- •151.3. Решение систем линейных уравнений по алгоритму Гаусса
- •151.4. Способ краковянов
- •§ 152. Коррелатный способ уравнивания
- •§ 153. Примеры коррелатного способа уравнивания
- •153.1. Уравнивание углов в полигоне
- •153.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •153.3. Уравнивание полигонометрического хода
- •153.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •153.5. Уравнивание триангуляции
- •153.6. Уравнивание триангуляции по условию координат
- •§ 154. Параметрический способ уравнивания
- •§ 155. Примеры параметрического способа уравнивания
- •155.1. Уравнивание углов в полигоне
- •155.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •155.3. Уравнивание полигонометрического хода
- •155.4. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •155.5. Уравнивание направлений в триангуляции
- •§ 156. Способ раздельного уравнивания
- •156.1. Уравнивание полигонометрического хода
- •156.2. Система полигонометрических ходов с одной узловой точкой
- •156.3. Система нивелирных ходов с одной узловой точкой
- •§ 157. Способ эквивалентной замены
- •§ 158. Способ полигонов В.В.Попова
- •§ 159. Способ последовательных приближений
- •§ 160. Оценка точности уравненных элементов и их функций
- •160.1. Общие положения
- •160.2. Оценка точности при уравнивании коррелатным способом
- •160.3. Оценка точности при уравнивании параметрическим способом
- •Предметный указатель
- •Список литературы
- •Оглавление
уравнивания вычислением трижды значений уравненной высоты узловой точки. Эти значения должны совпасть. Возможны в данном случае незначительные отклонения до 1 мм, что обусловлено округлением результатов вычислений.
Например, для хода (1):
-уравненные значения превышений: h10 = +3256 + 5 = +3261 мм; h20 = - 1848
+6 = - 1842 мм; h30 = + 2651 + 7 = + 2658 мм;
-уравненное значение высоты узловой точки (по данному ходу):
H M0 (1) = H ГР1 + h10 + h20 + h30 = 118,656 + 3,261 − 1,842 + 2,658 = 122 ,733 м.
§ 157. Способ эквивалентной замены
На рис. 16.17 а приведена схема нивелирных ходов с тремя узловыми точками А, В и С и двумя исходными реперами Р1 и Р2. В кружочках на схеме отмечены секции нивелирных линий, указаны номера превышений и длин линий в соответствующих секциях. Значения превышений указаны в мм в соответствии с направлением движения, длины линий даны в км, высоты исходных реперов – в метрах.
1. В трех замкнутых ходах (1), (2), (3) и одном разомкнутом ходе (4), например, от Р1 через т. А на Р2, определить невязки в превышениях:
W(1) = +4264 + 1205 – 1652 – 3802 = + 15 мм; W(2) = - 2074 – 1205 + 3287 = + 8 мм;
W(3) = + 1652 + 2074 – 3732 = - 6 мм;
W(4) = + 4264 + 3287 – (83786 – 76248) = + 13 мм.
2. Вычислить измеренные значения высот узловых точек А и С.
Высоты точек определим дважды: т. А – по ходам (1) и (5); т. С – по ходам (2) и (7). Результаты вычислений следует заносить в последовательности расчетов в ведомость уравнивания (табл. 16.64). Запись в таблице сравнительно сложная, поэтому внимательно посмотрите по приведенному примеру последовательность занесения в нее исходных и получаемых в расчетах величин.
486

Рис. 16.17. Уравнивание нивелирных ходов способом эквивалентной замены а) схема нивелирных ходов; б) эквивалентная схема
487

|
|
|
|
|
|
Таблица 16.64 |
|
|
Номер |
Измерен- |
|
Вычисленная |
|
Уравненное |
|
|
исход- |
ное превы- |
Длина |
высота |
Вес |
значение |
Поправка |
Ход |
ного |
шение, h , |
хода |
узловой |
Pi = |
высоты |
νi, мм |
|
пункта и |
мм |
Si , км |
точки, м |
2/si |
узловой |
|
|
его |
|
|
|
|
точки, м |
|
|
высота, |
|
|
|
|
|
|
|
м |
|
|
Точка А |
|
80,5048 |
|
|
|
|
|
|
|
||
1 |
Р1 |
+4264 |
2,75 |
80,5120 |
0,727 |
|
-7,2 |
5 |
76,248 |
-3287 |
2,64 |
80,4990 |
0,758 |
|
+5,8 |
(1,5) |
Р2 |
|
(1,35) |
(80,5054) |
1,485 |
|
-0,6 |
|
|
|
|||||
3 |
83,786 |
+1205 |
1,76 |
Точка С |
1,136 |
80,0537 |
-0,8 |
|
|
|
|
|
|
||
2 |
Р1 |
+3802 |
2,03 |
80,0500 |
0,985 |
|
+3,7 |
7 |
Р2 |
-3732 |
3,26 |
80,0540 |
0,614 |
|
-0,3 |
(2,7) |
|
|
(1,25) |
(80,0515) |
1,599 |
|
+2,2 |
|
|
|
|
||||
4 |
|
+1652 |
1,81 |
Точка В |
1,105 |
81,7090 |
+3,3 |
|
|
|
|
|
|
||
(1,5)+3 |
А |
+1205 |
3,11 |
81,7104 |
0,643 |
|
-1,4 |
(2,7)+4 |
С |
+1652 |
3,06 |
81,7035 |
0,654 |
|
+5,5 |
6 |
Р2 |
-2074 |
2,21 |
81,7120 |
0,905 |
|
-3,0 |
|
|
|
|
|
2,202 |
|
|
H A(1) = H P1 + h1 = 76,2480 |
+ 4,2640 = 80,5120 ; |
|||
H A(5) |
= |
H P2 − h51 = 83,786 − 3,287 = 80,4990 ; |
||
H C (2) |
= |
H P1 + h2 |
= 76,2480 |
+ 3,802 = 80,0500 ; |
H C(7) |
H P2 − h=7 |
= 83,786 − (+ 3,732 ) = 80,0540 ; |
||
3. Определить веса ходов (1), (2), (5) и (7) по формуле |
||||
|
|
p(i) = C |
(16.219) |
|
|
|
|
si , |
где s – длина хода; С – единица веса (для данных примера принято С = 2 км).
p(1) = 0,727 ; p(5) = 0,758 ; p(2) = 0,985 ; p(7) = 0,614 ;
4. Вычислить предварительные значения высот т. А и т. С как среднее весовое полученных в п. 2 значений с учетом весов каждого хода:
H A |
= |
H A(1) p(1) |
+ |
H A(5) p(5) |
= |
80,5120 ×0,727 + 80,4990 ×0,758 |
= |
80,5054 м |
||
p(1) |
+ |
p(5) |
|
|
1,485 |
|||||
|
|
|
|
|
|
|
||||
HС |
= |
HС (2) p(2) |
+ |
HС (7) |
p(7) |
= |
80,0500 ×0,985 + 80,0540 ×0,614 |
= |
80,0515 м |
|
p(1) |
+ |
p(5) |
|
|
1,599 |
|||||
|
|
|
|
|
|
|
5. Заменить систему одиночных ходов к точкам А и С от реперов Р1 и Р2 одним ходом: (1) + (5) → (1,5); (2) + (7) → (2,7) – рис. 16. б. Ходы (1,5) и (2,7) называются эквивалентными (очевидно, что не друг другу, а преобразованным первоначальным ходам).
В результате произведенной замены система нивелирных ходов существенно упростится и будет представлять собой систему нивелирных ходов с одной узловой точкой В.
488
Веса полученных ходов будут равны суммам весов, составляющих ход:
p(1,5) = p(1) + p(5) = 0,727 + 0,758 = 1,485 ; |
p(2,7) = p(2) + p(7) = 0,985 + 0,614 = 1,599 ; |
Длины эквивалентных ходов определятся как отношение единицы веса к весу эквивалентного хода:
s(1,5) |
= |
C |
= |
|
2 |
= 1,35 км ; |
s(2,7) = |
C |
= |
|
2 |
= 1,25 |
км |
|
p(1,5) |
1,485 |
p(2,7) |
1,599 |
|||||||||||
|
|
|
|
|
|
|
|
Под характеристиками ходов (1,5) и (2,7) в таблицу заносим характеристики ходов (3) и (4) от эквивалентных ходов к узловой точке В.
6. Трижды вычислим предварительное значение высоты узловой точки В по сложным ходам [(1,5) + (3)] и [(2,7) + (4)] и простому ходу (6) от репера
Р2:
- по ходу [(1,5) + (3)]: H В1 |
H A − h3= = 80,5054 + 1,205 = 81,7104 м |
|
|
|||||||
- по ходу [(2,7) + (4)]: H В11 |
HС − h4= = 80,0515 − (− 1,652) = 81,7035 м |
|
||||||||
- по ходу (6): H В111 = H Р 2 + h6 |
= 83,786 − 2,074 = |
81,7120 м |
|
|
|
|
||||
7. Вычислить характеристики сложных ходов: |
|
|
|
|
||||||
- длины ходов: s[(1,5)+ 3] |
= 1,35 + 1,76 = 3,11км; |
s[(2,7)+ 4] = 1,25 + 1,81 = 3,06 км. |
||||||||
- веса ходов: p[(1,5)+ 3] = |
C |
|
= |
2 |
= 0,643; |
p[(2,7)+ 4] = |
C |
= |
2 |
= 0,654; |
|
|
3,11 |
|
3,06 |
||||||
|
s[(1,5)+ 3] |
|
|
s[(2,7)+ 4] |
|
8. Определить окончательное уравненное значение высоты узловой точки В с учетом веса ходов, по которым были получены предварительные высоты этой точки (см. шаг 6):
0 |
|
|
H B1 p[(1,5)+ 3] + |
|
|
H B11 p[(2,7+ 4] + |
|
H B111 p(6) |
|
|
|||||||||||||
H B |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 81,7090 м. |
|
|
p[(1,5)+ 3] |
|
+ p[(2,7)+ 4] + |
p(6) |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||
9. Вычислить поправки по ходам [(1,5)+(3)], [(2,7)+(4)] и (6) по формуле |
|||||||||||||||||||||||
|
|
|
|
ν i = H B0 |
|
− H Bi |
: |
|
|
|
|
|
|
|
(16.220) |
||||||||
ν [(1,5)+ 3] |
= 81,7090 − 81,7104 |
|
|
|
= − 0,0014 м = − 1,4мм; |
||||||||||||||||||
ν [(2,7)+ 4] = 81,7090 − 81,7035 |
= |
+ 0,0055 м = |
|
+ 5,5мм; |
|||||||||||||||||||
ν (6) |
= 81,7090 − 81,7120 = − 0,0030 м = − 3,0мм . |
||||||||||||||||||||||
Поправки в составляющие ходы находят в весовом отношении к длинам |
|||||||||||||||||||||||
ходов: |
|
|
|
|
|
|
|
|
s(1,5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ν |
|
|
= ν [(1,5)+ 3] |
|
|
|
|
= |
− 1,4 |
1,35 |
|
= |
|
− 0,6мм; |
||||||||
|
(1,5) |
|
s[(1,5)+ 3] |
|
|
3,11 |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
ν 3 = ν [(1,5)+ 3] |
|
|
|
|
s(3) |
|
= − 1,4 |
1,76 |
= |
− |
0,8мм; |
|||||||||||
|
|
s[(1,5)+ 3] |
3,11 |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
ν |
|
|
= ν [(2,7)+ 4] |
|
|
s(2,7) |
|
|
|
= |
+ 5,5 |
1,25 |
= |
|
+ 2,2мм; |
|||||||
|
(2,7) |
|
|
s[(2,7)+ 4 |
|
|
3,06 |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
] |
|
|
|
|
|
|
|
|
|
|||||
|
ν (4) |
= ν [(2,7)+ 4] |
|
|
|
s(4) |
|
= |
+ 5,5 |
1,81 |
|
= |
+ 3,3мм; |
||||||||||
|
|
s[(2,7)+ 4] |
|
3,06 |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10. Определить окончательные уравненные значения высот узловых точек А и С.
Для этого к их предварительным значениям необходимо прибавить полученные по соответствующим ходам поправки:
HA0 = H A + ν
HС0 = HС + ν
(1,5)
(2,7)
=80,5054 − 0,6 = 80,5048 м;
=80,0515 + 2,2 = 80,0537 м;
11. Определить поправки по ходам (1), (5), (2), (7).
489