Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_1sem(2).docx
Скачиваний:
64
Добавлен:
16.03.2015
Размер:
80.95 Кб
Скачать

14) Полпоследовательности. Теорема Больцана-Вейерштрасса.

Пусть дано {xn} некоторая посл-ть и nk – некоторая строго возраст.посл-ть состоящ.из натур.чисел, посл-ть {xn} наз-ся подпоследовательностью данной посл-ти {xn}. Пусть {xn}. Может предела не иметь, а посл-ть {xnk} имеет предел: {xn}= {(-1)n}={-1,1,-1,1…}. nk={xnk}= {1,1….1}. n=2k.

Теорема Больц-Вейерштрасса. Из всякой огран.посл-ти {xn} можно выбрать сходщуюся подпос-ть. а<xn<b, ∀n∈N. Возьмем отрезок [a;b] и разделим пополам,тогда в одной из половинок находится бесконечно много элементов посл-ти. [a;b]⊃[a1;b1]⊃[a2;b2]⊃…

bk-ak=b-a/2k, k –ak)=0. Это означает, что пос-ть вложенных отрезков стягиваются и все они имеют одну общую точку С.

15) Предельная точка области определения функции. Предел функции в точке (определения по Коши и Гейне). Эквивал. О.1 и о.2.

Предел ф-ии в точке. Мн-во, на катором определена ф-ия, может быть любым. Точка а, предел которой мы рассматриваем, должна быть предельной точкой этого мн-ва, предельной точкой этого мн-ва, т.е. любой ее, достаточно малой окрестности должно содержаться бесконечно много точек мн-ва.

По Коши: А=δ(a)=>f(x)∈Uε(A).

По Гейне. n=a, {xn}, xn≠a, f(xn). Если для любой сходящ.к а посл-ти {xn} такой,что х≠а, соотв.посл-ть значений ф-ий f(xn) сходится к одному и тому же числу А, то число А наз-ся пределом ф-ии при х→а.

16) Теорема о пределах ф-ии.

Теорема. 1. Предел суммы есть сумма пределов.

Теорема. 2. Предел произведения есть произведение пределов.

Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0).

Теорема. 4. Если u(x) Ј z(x) Ј v(x), и limx® a u(x)=limx® a v(x)=b, то limx® a z(x)=b. ("Теорема о двух милиционерах").

17) Односторонние пределы. Gредел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторонним пределом (или пределом слева) и правосторонним пределом (или пределом справа).

Пусть задана числовая функция f : M⊂R→R и a ∈ M — предельная точка области определения M.

Число A ∈R называется правосторонним пределом функции f при x стремящемся к a, если

∀ε>0∃δ>0 ∀x∈(a,a+δ)∩M lf(x)-Al<ε.

Число называется левосторонним пределом функции f при x стремящемся к a, если

∀ε>0∃δ>0 ∀x∈(a-δ,a)∩M lf(x)-Al<ε.

18) Необходимые и достаточные условия сущ-ия предела ф-ии.

Необходимость. A=

Достаточность.

19) Первый замечательный предел.Следствия. – первый замечательный предел. Следствия. 1) 2=1/2. 2) .

  1. 3) . 3). 4)

20) Предел ф-ии при х→∞. при х →∞ (случаи когда х0 есть +∞ или -∞). А именно, равенство (*) во всех случаях означает следующее: для любой последовательности { хn}, сходящейся к х0 , соответствующая последовательность {f(хn)} сходится к а

21) Второй замечательный предел. Следствия. x=e. Следствия:

1) x=e. 2) 1/x=e. 3) =. 4)x-1)/x – 1. 5) x-1)/x = lna

22) Сравнение б.м.ф-ий. Применения для вычисления предела.

Пусть α(x) и β(x) — две функции, бесконечно малые в точке x=a. Если , то говорят, что α(x) более высокого порядка малости, чем β(x) и обозначают α(x)=0(β(x)) . Если же, тоβ(x) более высокого порядка малости, чем α(x); обозначают β(x)=0(α(x)). Бесконечно малые функции α(x)и β(x) называются бесконечно малыми одного порядка малости, если , обозначают α(x)=0(. И, наконец, еслине существует, то бесконечно малые функции α(x) и β(x) несравнимы.

Если, то бесконечно малые функции α(x) и β(x) называются эквивалентными, обозначают α(x)~β(x).

23) Непрерывность ф-ии. Функция f(x) называется непрерывной в точке x=x0, если ее предел в этой точке равен значению функции в этой точке. Условия непрерывности:1)х0∈D(f) 2)∃ 3) ∀ε>0,∃δ>0:lx-x0l<δ=>lf(x)-f(x0)l<ε. Функция y=f(x) называется непрерывной в точке x=x0, если она определена в некоторой окрестности точки x0 (очевидно, и в самой точке x0)и если или,что то же самоеФункция y=f(x) называется непрерывной на данном промежутке, если она непрерывна в каждой точке этого промежутка.

24. Непрерывность сложной функции.

y=f(𝛗(t)), φ(t = x.

Теорема.

1)Если ф-ия φ(t) непрер.в точке t0

2)Ф-ия f(x) непрер.в т. x=x0

Причем φ(t0)=x0.=> то y = f(φ(t))- непрер.в точке t=t0

25) Арифм.оперции над непрерывными ф-ми. Теорема. Пусть ф-ии f(x) и g(x) определены в области Д и непрерывны в точке х0 пранадлежащей области Д, тогда в этой точке неррерывны f(x)±g(x), g(x)*f(x), f(x)/g(x) при условии что g(x0)≠0.

26) Непрерывные элементарные ф-ии.Пример. Ф-ии, которые получаются из осоновных, с помощью конечного числа арифметическимх операций, а так же конечного числа суперпозиции наз-ся элементарными функциями.