Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 2 Соединение Деталей машин .doc
Скачиваний:
421
Добавлен:
16.03.2015
Размер:
647.17 Кб
Скачать

Распределение осевой нагрузки винта по виткам резьбы.

На рис.2.15 изображена схема винтовой пары. Осевая нагрузка Р винта передается через резьбу гайке и уравновешивается реакцией ее опоры. При этом каждый виток резьбы нагружается соответственно силами Р1, Р2,…, Рz. Сумма Р1 + Р2 + …+ Рz = Р. При равномерном распределении нагрузки в резьбе

Р1 = Р2 = …= Рz = Р/z,

где z – число витков резьбы гайки.

Эпюра осевых сил в различных сечениях стержня винта при равномерном распределении нагрузки в резьбе изображена на рис. 2.15,а. Здесь в каждом последующем сечении нагрузка уменьшается равномерно на величину Р/z.

Приближенно – равномерное распределение нагрузки по виткам резьбы можно получить, только применяя гайки специальной формы (см. ниже). В простых гайках витки резьбы нагружаются неравномерно – рис.2.15, б.

Одной из причин неравномерного распределения нагрузки в резьбе является неблагоприятное сочетание деформаций винта и гайки. Например, в рассматриваемом случае (см. рис.2.15) винт растягивается, а гайка сжимается. При этом точки A, B, C и D винта и гайки перемещаются вниз соответственно на A,B,C и D.

Рис.2.15

Вследствие растяжения участка АВ винта

BA, (а)

а вследствие сжатия участка CD гайки

D C (б)

Все деформации витка резьбы и в том числе прогиб витка пропорциональны его нагрузке. Выражая прогиб через относительное перемещение точек AиD(ad),BиC(вс) и т.Д., где

AD =A-D

ВС = B - C (в)

и учитывая неравенства (а) и (б), находим

ADВС (г)

Следовательно, нагрузка первого витка больше нагрузки второго, и т.д.

Теоретическое решение задачи о распределении нагрузки по виткам резьбы было дано Н.Е. Жуковским в 1902 г. В дальнейшем это решение неоднократно подтверждалось экспериментальными исследованиями на прозрачных моделях. Установлено, например, что при стандартной крепежной гайке с шестью витками первый виток резьбы воспринимает около 52% нагрузки Р, второй – 25%, третий – 12% и последний, шестой виток – только 2% (см. рис.2.15,б).

Указанные теоретические и экспериментальные исследования позволили разработать конструкции специальных гаек, выравнивающих распределение нагрузки в резьбе (рис.2.16,). На рис.2.16,а изображена висячая гайка. Выравнивание нагрузки в резьбе здесь достигают благодаря тому, что винт и гайка имеют однозначные деформации растяжения. При этом неравенство (б) изменится и будет D C, а разность между AD и ВС уменьшится. Кроме того, в наиболее нагруженной нижней зоне висячая гайка обладает повышенной податливостью, что также способствует выравниванию нагрузки а резьбе. При соответствующем подборе формы висячей гайки можно получить равномерное распределение нагрузки в резьбе. На рис.2.16,б показана разновидность висячей гайки – гайка с кольцевой выточкой.

Рис.2.16

У гайки, изображенной на рис.2.16,в, срезаны вершины нижних витков резьбы под углом 15-200. При этом увеличена податливость нижних витков винта, так как они соприкасаются с гайкой не всей поверхностью, а только своими вершинами. Увеличение податливости витков в наиболее нагруженной зоне снижает нагрузку этих витков.

Специальные гайки особенно желательно применять для соединений, подвергающихся действию динамических нагрузок. Разрушение таких соединений, как правило, имеет усталостный характер и происходит в зоне наибольшей концентрации напряжений у нижнего (наиболее нагруженного) витка резьбы. Уменьшение нагрузки нижних витков повышает прочность соединения. Опытом установлено, что применение специальных гаек позволяет повысить динамическую прочность резьбовых соединений на 20-30%.