- •Санкт-Петербургский государственный университет телекоммуникаций им.Проф. М.А. Бонч-Бруевича в.М. Охорзин
- •Санкт-Петербург
- •Тема 1. Основные понятия и определения в области пдс
- •1.1.Дискретность
- •Соответствующие виды сигналов:
- •1.2.Модуляция
- •1.3.Кодирование
- •1.4.Упрощенная структурная схема аппаратуры пдс.
- •Модулятор – устройство, осуществляющее модуляцию. Демодулятор осуществляет обратное преобразование. Совокупность модулятора и демодулятора образует модем.
- •1.5. Основные параметры и характеристики системы пдс
- •Тема 2. Системные характеристики систем передачи дискретных сообщений 2.1 Понятие об эталонной модели взаимодействия открытых систем
- •2.2. Понятие о телеуслугах
- •2.3 Первичные коды в системах пдс
- •2.3.1. Телеграфные коды
- •2.3.2. Коды для передачи данных
- •Тема 3. Основные характеристики уровня дискретногоканаласистем пдс
- •3.1. Понятие об искажениях дискретных сигналов
- •3.1.1. Классификация искажений
- •3.1.2.Характеристические краевые искажения
- •3.1.3 Краевые искажения типа преобладаний
- •3.1.4.Случайные искажения
- •3.2.Понятие о методах регистрации дискретных сигналов
- •3.2.1.Метод стробирования
- •3.2.2. Интегральный метод
- •Интегрирование в промежутке, меньшем длительности элементарной посылки
- •3.3 Оценка эффективности методов регистрации
- •3.3.1.Распределение краевых искажений
- •3.3.2. Распределение дроблений
- •3.3.3. Расчет вероятности ошибки при краевых искажениях
- •3.3.4.Расчет вероятности ошибки при дроблениях
- •3.4.Модели дискретных каналов
- •3.4.1.Поток ошибок в дискретном канале
- •3.4.2.Методы выявления и исследования последовательностей ошибок
- •3.4.3 Основные закономерности распределения ошибок в реальных каналах связи
- •3.4.4 Математические модели дискретных каналов с группированием ошибок
- •А. Модель неоднородного канала.
- •Б. Двухпараметрическая модель дискретного канала
- •Тема 4. Устройство синхронизации по элементам (усп).
- •4.1.Назначение и классификация
- •Основные элементы устройства , реализующего фапч:
- •4.2. Необходимость поэлементной синхронизации . Расчет времени удержания синхронизма.
- •4.3.Схема фапч с дискретным управлением.
- •4.4.Основные характеристики системы фапч.
- •Тема 5. Линейные (n,k)-коды
- •5.1. Определение помехоустойчивых кодов и их общие характеристики
- •5.1.1. Принципы построения помехоустойчивых кодов
- •5.1.2. Основные характеристики помехоустойчивых кодов
- •5.1.3 Классификация помехоустойчивых кодов
- •5.1.4.Граничные соотношения между характеристиками помехоустойчивых кодов
- •5.1.5.Задачи
- •5.2. Групповые коды и способы их описания
- •5.2.1. Основные алгебраические системы, используемые в теории кодирования
- •5.2.2. Способы представления кодовых комбинаций
- •5.2.3. Определение группового кода
- •5.2.4. Матричное описание групповых кодов
- •5.2.5. Задачи
- •5.3. Другие свойства групповых кодов
- •5.3.1. Корректирующие свойства групповых кодов
- •5.3.2. Процедуры кодирования и декодирования для группового кода
- •5.3.3. Укорочение кода
- •5.3.4. Оценка эффективности групповых кодов
- •5.3.5. Смежно-групповые коды
- •5.3.6. Задачи
- •5.4. Примеры групповых кодов
- •5.4.1. Коды с единственной проверкой на четность
- •5.4.2. Коды Хэмминга
- •5.4.3. Итеративные коды.
- •5.4.4 Задачи
- •Тема 6. Двоичные циклические (n,k) - коды
- •6.1. Основные алгебраические системы, используемые в теории кодирования.
- •6.2. Определение циклического кода
- •6.3. Построение порождающей и проверочной матриц циклических кодов.
- •6.4. Коды Боуза-Чоудхури-Хоквингема (бчх).
- •6.5. Выбор порождающего многочлена для кода бчх
- •6.6. Эффективность двоичных кодов бчх
- •6.6.1. Задачи
- •6.7. Кодирующие и декодирующие устройства циклических кодов
- •6.7.1 Процедура кодирования и декодирования для циклических кодов
- •6.7.2. Линейные переключательные схемы, используемые в кодирующих и декодирующих устройствах циклических кодов
- •6.7.3. Схемы кодирующих устройств циклических кодов
- •6.7.4. Декодирующие устройства циклических кодов
- •6.7.5. Задачи
- •Тема 7. Коды Рида- Соломона (рс)
- •7.1. Определение и основные свойства
- •Пример 7.1
- •Пример 7.2
- •7.1.1. Расширенные рс-коды
- •Пример 7.3
- •7.1.2. Укороченные рс-коды
- •7.1.3. Отображение рс-кодов над gf(2m) на двоичные коды
- •7.1.4. Способы кодирования и декодирования рс-кодов
- •1. Многочлен локаторов ошибок:
- •2.Синдромный многочлен
- •3. Многочлен значений ошибок
- •7.2. Быстрое декодирование кодов бчх
- •7.2.1. Ключевое уравнение
- •7.2.2. Решение ключевого уравнения
- •7.2.3. Примеры решения ключевого уравнения
- •7.3.Кодирование на основе решения ключевого уравнения
- •7.4.Задачи
- •Тема 8. Непрерывные коды
- •8.1. Сверточное кодирование
- •8.2. Представление сверточного кодера
- •8.2.1. Представление связи
- •8.2.1.1. Реакция кодера на импульсное возмущение
- •8.2.1.2. Полиномиальное представление
- •8.2.2. Представление состояния и диаграмма состояний
- •8.2.3. Древовидные диаграммы
- •8.2.4. Решетчатая диаграмма
- •8.3. Формулировка задачи сверточного декодирования
- •8.3.1. Алгоритм сверточного декодирования Витерби
- •8.3.2. Пример сверточного декодирования Витерби
- •8.4. Декодирование с мягким решением
- •8.4.1. Модель канала с абгш
- •2.1.2. Передача двоичных сигналов по каналам с абгш
- •2.1.3. Алгоритм Витерби с Евклидовой метрикой
- •8.5. Связь с блоковыми кодами
- •8.5.1. Терминированная конструкция (нулевой хвост)
- •8.5.2. Усеченная конструкция (direct truncation)
- •8.5.3. Кольцевая (циклическая или циклически замкнутая) (tail-biting) конструкция
- •8.5.4. Распределение весов
- •8.6. Модифицированный граф состояний
- •8.7. Решение задач
- •8.7.1. Задачи
- •8.7.2. Решение
- •8.3.2.1. Процедура сложения, сравнения и выбора
- •8.3.2.2. Вид процедуры сложения, сравнения и выбора на решетке
- •8.3.3. Память путей и синхронизация
- •8.4. Свойства сверточных кодов
- •8.4.1. Пространственные характеристики сверточных кодов
- •8.4.1.1. Возможности сверточного кода в коррекции ошибок
- •8.4.2. Систематические и несистематические сверточные коды
- •8.4.3. Распространение катастрофических ошибок в сверточных кодах
- •8.4.4. Границы рабочих характеристик сверточных кодов
- •8.4.5. Эффективность кодирования
- •8.4.6. Наиболее известные сверточные коды
- •8.5. Задачи
- •Тема 9. Некоторые специальные классы кодов. Составные коды
- •9.1. Коды для исправления пачек ошибок
- •9.2. Коды на основе последовательностей максимальной длины
- •9.3. Коды для асимметричных каналов
- •9.3.1. Коды с постоянным весом
- •9.3.2. Коды Бергера
- •9.4 Каскадные коды
- •9.4.1. Принципы построения каскадных кодов
- •9.4.2. Режимы использования каскадных кодов
- •9.4.3. Построение двоичных каскадных кодов на основе кодов Рида–Соломона и Боуза–Чоудхури–Хоквингема
- •Пример 9.2.
- •Пример 9.3.
- •9.5. Задачи
- •Тема 10. Цикловая синхронизация
- •10.1 Назначение и классификация способов цикловой синхронизации
- •10.2. Способ установки фазы приемного распределителя путем сдвига.
- •10.3. Способ мгновенной установки фазы
- •10.3.1. Маркерный способ цикловой синхронизации на основе синхронизирующих кодовых последовательностей
- •10.4 . Способ выделения сигнала фазового запуска по зачетному отрезку
- •Тема 11. Системные методы защиты от ошибок без обратной связи
- •11.1. Классификация и основные характеристики систем повышения достоверности
- •11.1.1. Теоретические основы системных методов защиты от ошибок
- •11.1.2. Классификация системных методов защиты от ошибок
- •11.1.3 .Основные параметры и характеристики систем повышения достоверности
- •11.2. Методы повышения достоверности в однонаправленных системах
- •11.2.1.Однонаправленные системы с многократным повторением сообщений
- •11.2.2.Однонаправленные системы с исправляющим ошибки кодом
- •11.2.3.Однонаправленные системы с исправлением стираний
- •11.3. Задачи
- •Тема 12. Системные методы защиты от ошибок с обратной связью
- •12.1. Системы повышения достоверности с решающей обратной связью с непрерывной последовательной передачей сообщений и блокировкой (рос-пПбл).Общие положения
- •12.2. Описание работы системы рос-пПбл
- •12.3. Режим переспроса
- •12.4. Расчет параметров системы рос-пПбл Относительная скорость передачи
- •Расчет вероятности ошибок на выходе системы
- •12.5. Рекомендации по выбору оптимального кода
- •Охарактеризуем поток ошибок, пропущенных в приемник сообщений средней вероятностью ошибки на бит, равной и показателем группирования ошибок.
- •12.6. Выбор порождающего многочлена
- •12.7. Задачи
- •Приложение 1. Коды бчх
- •Приложение 4
- •Список использованных источников
- •Предметный указатель
- •Тема 1. Основные понятия и определения в области пдс………………..……....2
- •Тема 2. Системные характеристики систем передачи дискретных сообще……...11
- •Тема 3. Основные характеристики уровня дискретного канала пдс…………………21
- •Тема 4. Устройство синхронизации по элементам (усп)…………………………...50
- •Тема 5. Линейные (n,k)-коды…….………………………………………………………..54
- •Тема 6. Двоичные циклические (n,k) – коды…………………………………… …….105
- •Тема 7. Коды Рида- Соломона (рс)…………………………………………..………..165
- •7.1.3. Отображение рс-кодов над gf(2m) на двоичные коды…………………….170
- •Тема 8. Непрерывные коды……………………………………………..………………..185
- •Тема 9. Некоторые специальные классы кодов. Составные коды………………..……210
- •9.4.1. Принципы построения каскадных кодов…………………………………………………215
- •9.4.2. Режимы использования каскадных кодов……………………………………………….218
- •9.4.3. Построение двоичных каскадных кодов на основе кодов Рида–Соломона и Боуза–Чоудхури–Хоквингема………………..……………………………………………….…219
- •Тема 11. Системные методы защиты от ошибок без обратной связи………………..……234
- •Тема 12. Системные методы защиты от ошибок с обратной связью…..…………….244
8.2. Представление сверточного кодера
Чтобы иметь возможность описывать сверточный код, необходимо определить кодирующую функцию G(m) так, чтобы по данной входной последовательности m можно было быстро вычислить выходную последовательность U. Для реализации сверточного кодирования используется несколько методов; наиболее распространенными из них являются графическая связь, векторы, многочлены связи, диаграмма состояния, древовидная и решетчатая диаграммы. Все они рассматриваются ниже.
8.2.1. Представление связи
При обсуждении сверточных кодеров в качестве модели будем использовать сверточный кодер, показанный на рис. 8.3. На этом рисунке изображен сверточный кодер с длиной кодового ограничения К = 3. В нем имеется п = 2 сумматора по модулю 2; следовательно, степень кодирования кода k/n равна 1/2. При каждом поступлении бит помещается в крайний левый разряд, а биты регистра смещаются на одну позицию вправо. Затем коммутатор на выходе дискретизирует выходы всех сумматоров по модулю 2 (т.е. сначала верхний сумматор, затем нижний), в результате чего формируются пары кодовых символов, образующих кодовое слово, связанное с только что поступившим битом. Это выполняется для каждого входного бита. Выбор связи между сумматорами и разрядами регистра влияет на характеристики кода. Всякое изменение в выборе связей приводит в
результате к различным кодам. Связь, конечно же, выбирается и изменяется не произвольным образом. Задача выбора связей, дающая оптимальные дистанционные свойства, сложна и в общем случае не решается; однако для всех значений длины кодового ограничения, меньших 20, с помощью компьютеров были найдены хорошие коды .
В отличие от блочных кодов, имеющих фиксированную длину слова п, в сверточных кодах нет определенного размера блока. Однако с помощью периодического отбрасывания сверточным кодам часто принудительно придают блочную структуру. Это требует некоторого количества нулевых разрядов, присоединенных к концу входной последовательности данных, которые служат для очистки (или промывки) регистра сдвига от бит данных. Поскольку добавленные нули не несут дополнительной информации, эффективная степень кодирования будет ниже k/n. Чтобы степень кодирования оставалась близкой к k/n, период отбрасывания чаще всего делают настолько большим, насколько это возможно.
Один из способов реализации кодера заключается в определении п векторов связи, по одному на каждый из п сумматоров по модулю 2. Каждый вектор имеет размерность К и описывает связь регистра сдвига кодера с соответствующим сумматором по модулю 2. Единица на i-й позиции вектора указывает на то, что соответствующий разряд в регистре сдвига связан с сумматором по модулю 2, а нуль в данной позиции указывает, что связи между разрядом и сумматором по модулю 2 не существует. Для кодера на рис. 8.3 можно записать вектор связи g1 для верхних связей, а g2 — для нижних: g1=1 1 1, g2=1 0 1.
8.2.1.1. Реакция кодера на импульсное возмущение
Мы можем описать кодер через его импульсную характеристику, т.е. в виде отклика кодера на единичный проходящий бит. Рассмотрим содержимое регистра (рис. 8.3) при прохождении через него двоичной единицы.
Содержимое регистра кодера и формирование выходной последовательности при входной последовательности 1 0 0 … представляется следующей таблицей:
Предположим теперь, что вектор сообщения m = 1 0 1 закодирован с использованием сверточного кода и кодера, показанного на рис. 8.3. Введены три бита сообщения, по одному в момент времени t1 ,t2 и t3, как показано на рис. 8.4. Затем для очистки регистра в моменты времени t4 и t5 введены (К - 1) = 2 нуля, что в результате приводит к смещению конечного участка на всю длину регистра. Последовательность на выходе выглядит следующим образом: 1 1 1 0 0 0 1 0 1 1, где
крайний левый символ представляет первую передачу. Для декодирования сообщения нужна полная последовательность на выходе (включающая кодовые символы). Для удаления сообщения из кодера требуется на единицу меньше нулей, чем имеется разрядов в регистре, или К - 1 очищенных бит.
В момент времени t6 показан нулевой выход, это должно дать читателю возможность убедиться в том, что в момент времени t5 регистр устанавливается в исходное состояние. Таким образом, в момент времени t6 уже можно передавать новое сообщение.
Последовательность на выходе при единице на входе называется откликом кодера на импульсное возмущение, или его импульсной характеристикой. Для входной последовательностиm = 1 0 1 данные на выходе могут быть найдены путем суперпозиции или линейного сложения смещенных во времени входных "импульсов".
Обратим внимание на то, что эти данные на выходе такие же, как и на рис. 8.4, что указывает на линейность сверточных кодов — точно так же как и в блочных кодах. Название сверточный кодер (convolutional encoder) возникло именно вследствие этого свойства генерации данных на выходе кодера с помощью линейного сложения (или свертки) смещенных во времени импульсов входной последовательности m с импульсной характеристикой кодера. Сверточные коды и сверточные кодеры описываются с помощью порождающей матрицы сверточного кода бесконечного порядка:
G = ,
в которой строки являются импульсной характеристикой и ее циклическими сдвигами. Пустые ячейки в представленной матрице G заполнены нулями. Выходная последовательность u вычисляется по порождающей матрице G и входной последовательности m по правилам умножения матриц
u = m G.
Данное выражение является матричной формой процедуры дискретной свертки.