
- •Санкт-Петербургский государственный университет телекоммуникаций им.Проф. М.А. Бонч-Бруевича в.М. Охорзин
- •Санкт-Петербург
- •Тема 1. Основные понятия и определения в области пдс
- •1.1.Дискретность
- •Соответствующие виды сигналов:
- •1.2.Модуляция
- •1.3.Кодирование
- •1.4.Упрощенная структурная схема аппаратуры пдс.
- •Модулятор – устройство, осуществляющее модуляцию. Демодулятор осуществляет обратное преобразование. Совокупность модулятора и демодулятора образует модем.
- •1.5. Основные параметры и характеристики системы пдс
- •Тема 2. Системные характеристики систем передачи дискретных сообщений 2.1 Понятие об эталонной модели взаимодействия открытых систем
- •2.2. Понятие о телеуслугах
- •2.3 Первичные коды в системах пдс
- •2.3.1. Телеграфные коды
- •2.3.2. Коды для передачи данных
- •Тема 3. Основные характеристики уровня дискретногоканаласистем пдс
- •3.1. Понятие об искажениях дискретных сигналов
- •3.1.1. Классификация искажений
- •3.1.2.Характеристические краевые искажения
- •3.1.3 Краевые искажения типа преобладаний
- •3.1.4.Случайные искажения
- •3.2.Понятие о методах регистрации дискретных сигналов
- •3.2.1.Метод стробирования
- •3.2.2. Интегральный метод
- •Интегрирование в промежутке, меньшем длительности элементарной посылки
- •3.3 Оценка эффективности методов регистрации
- •3.3.1.Распределение краевых искажений
- •3.3.2. Распределение дроблений
- •3.3.3. Расчет вероятности ошибки при краевых искажениях
- •3.3.4.Расчет вероятности ошибки при дроблениях
- •3.4.Модели дискретных каналов
- •3.4.1.Поток ошибок в дискретном канале
- •3.4.2.Методы выявления и исследования последовательностей ошибок
- •3.4.3 Основные закономерности распределения ошибок в реальных каналах связи
- •3.4.4 Математические модели дискретных каналов с группированием ошибок
- •А. Модель неоднородного канала.
- •Б. Двухпараметрическая модель дискретного канала
- •Тема 4. Устройство синхронизации по элементам (усп).
- •4.1.Назначение и классификация
- •Основные элементы устройства , реализующего фапч:
- •4.2. Необходимость поэлементной синхронизации . Расчет времени удержания синхронизма.
- •4.3.Схема фапч с дискретным управлением.
- •4.4.Основные характеристики системы фапч.
- •Тема 5. Линейные (n,k)-коды
- •5.1. Определение помехоустойчивых кодов и их общие характеристики
- •5.1.1. Принципы построения помехоустойчивых кодов
- •5.1.2. Основные характеристики помехоустойчивых кодов
- •5.1.3 Классификация помехоустойчивых кодов
- •5.1.4.Граничные соотношения между характеристиками помехоустойчивых кодов
- •5.1.5.Задачи
- •5.2. Групповые коды и способы их описания
- •5.2.1. Основные алгебраические системы, используемые в теории кодирования
- •5.2.2. Способы представления кодовых комбинаций
- •5.2.3. Определение группового кода
- •5.2.4. Матричное описание групповых кодов
- •5.2.5. Задачи
- •5.3. Другие свойства групповых кодов
- •5.3.1. Корректирующие свойства групповых кодов
- •5.3.2. Процедуры кодирования и декодирования для группового кода
- •5.3.3. Укорочение кода
- •5.3.4. Оценка эффективности групповых кодов
- •5.3.5. Смежно-групповые коды
- •5.3.6. Задачи
- •5.4. Примеры групповых кодов
- •5.4.1. Коды с единственной проверкой на четность
- •5.4.2. Коды Хэмминга
- •5.4.3. Итеративные коды.
- •5.4.4 Задачи
- •Тема 6. Двоичные циклические (n,k) - коды
- •6.1. Основные алгебраические системы, используемые в теории кодирования.
- •6.2. Определение циклического кода
- •6.3. Построение порождающей и проверочной матриц циклических кодов.
- •6.4. Коды Боуза-Чоудхури-Хоквингема (бчх).
- •6.5. Выбор порождающего многочлена для кода бчх
- •6.6. Эффективность двоичных кодов бчх
- •6.6.1. Задачи
- •6.7. Кодирующие и декодирующие устройства циклических кодов
- •6.7.1 Процедура кодирования и декодирования для циклических кодов
- •6.7.2. Линейные переключательные схемы, используемые в кодирующих и декодирующих устройствах циклических кодов
- •6.7.3. Схемы кодирующих устройств циклических кодов
- •6.7.4. Декодирующие устройства циклических кодов
- •6.7.5. Задачи
- •Тема 7. Коды Рида- Соломона (рс)
- •7.1. Определение и основные свойства
- •Пример 7.1
- •Пример 7.2
- •7.1.1. Расширенные рс-коды
- •Пример 7.3
- •7.1.2. Укороченные рс-коды
- •7.1.3. Отображение рс-кодов над gf(2m) на двоичные коды
- •7.1.4. Способы кодирования и декодирования рс-кодов
- •1. Многочлен локаторов ошибок:
- •2.Синдромный многочлен
- •3. Многочлен значений ошибок
- •7.2. Быстрое декодирование кодов бчх
- •7.2.1. Ключевое уравнение
- •7.2.2. Решение ключевого уравнения
- •7.2.3. Примеры решения ключевого уравнения
- •7.3.Кодирование на основе решения ключевого уравнения
- •7.4.Задачи
- •Тема 8. Непрерывные коды
- •8.1. Сверточное кодирование
- •8.2. Представление сверточного кодера
- •8.2.1. Представление связи
- •8.2.1.1. Реакция кодера на импульсное возмущение
- •8.2.1.2. Полиномиальное представление
- •8.2.2. Представление состояния и диаграмма состояний
- •8.2.3. Древовидные диаграммы
- •8.2.4. Решетчатая диаграмма
- •8.3. Формулировка задачи сверточного декодирования
- •8.3.1. Алгоритм сверточного декодирования Витерби
- •8.3.2. Пример сверточного декодирования Витерби
- •8.4. Декодирование с мягким решением
- •8.4.1. Модель канала с абгш
- •2.1.2. Передача двоичных сигналов по каналам с абгш
- •2.1.3. Алгоритм Витерби с Евклидовой метрикой
- •8.5. Связь с блоковыми кодами
- •8.5.1. Терминированная конструкция (нулевой хвост)
- •8.5.2. Усеченная конструкция (direct truncation)
- •8.5.3. Кольцевая (циклическая или циклически замкнутая) (tail-biting) конструкция
- •8.5.4. Распределение весов
- •8.6. Модифицированный граф состояний
- •8.7. Решение задач
- •8.7.1. Задачи
- •8.7.2. Решение
- •8.3.2.1. Процедура сложения, сравнения и выбора
- •8.3.2.2. Вид процедуры сложения, сравнения и выбора на решетке
- •8.3.3. Память путей и синхронизация
- •8.4. Свойства сверточных кодов
- •8.4.1. Пространственные характеристики сверточных кодов
- •8.4.1.1. Возможности сверточного кода в коррекции ошибок
- •8.4.2. Систематические и несистематические сверточные коды
- •8.4.3. Распространение катастрофических ошибок в сверточных кодах
- •8.4.4. Границы рабочих характеристик сверточных кодов
- •8.4.5. Эффективность кодирования
- •8.4.6. Наиболее известные сверточные коды
- •8.5. Задачи
- •Тема 9. Некоторые специальные классы кодов. Составные коды
- •9.1. Коды для исправления пачек ошибок
- •9.2. Коды на основе последовательностей максимальной длины
- •9.3. Коды для асимметричных каналов
- •9.3.1. Коды с постоянным весом
- •9.3.2. Коды Бергера
- •9.4 Каскадные коды
- •9.4.1. Принципы построения каскадных кодов
- •9.4.2. Режимы использования каскадных кодов
- •9.4.3. Построение двоичных каскадных кодов на основе кодов Рида–Соломона и Боуза–Чоудхури–Хоквингема
- •Пример 9.2.
- •Пример 9.3.
- •9.5. Задачи
- •Тема 10. Цикловая синхронизация
- •10.1 Назначение и классификация способов цикловой синхронизации
- •10.2. Способ установки фазы приемного распределителя путем сдвига.
- •10.3. Способ мгновенной установки фазы
- •10.3.1. Маркерный способ цикловой синхронизации на основе синхронизирующих кодовых последовательностей
- •10.4 . Способ выделения сигнала фазового запуска по зачетному отрезку
- •Тема 11. Системные методы защиты от ошибок без обратной связи
- •11.1. Классификация и основные характеристики систем повышения достоверности
- •11.1.1. Теоретические основы системных методов защиты от ошибок
- •11.1.2. Классификация системных методов защиты от ошибок
- •11.1.3 .Основные параметры и характеристики систем повышения достоверности
- •11.2. Методы повышения достоверности в однонаправленных системах
- •11.2.1.Однонаправленные системы с многократным повторением сообщений
- •11.2.2.Однонаправленные системы с исправляющим ошибки кодом
- •11.2.3.Однонаправленные системы с исправлением стираний
- •11.3. Задачи
- •Тема 12. Системные методы защиты от ошибок с обратной связью
- •12.1. Системы повышения достоверности с решающей обратной связью с непрерывной последовательной передачей сообщений и блокировкой (рос-пПбл).Общие положения
- •12.2. Описание работы системы рос-пПбл
- •12.3. Режим переспроса
- •12.4. Расчет параметров системы рос-пПбл Относительная скорость передачи
- •Расчет вероятности ошибок на выходе системы
- •12.5. Рекомендации по выбору оптимального кода
- •Охарактеризуем поток ошибок, пропущенных в приемник сообщений средней вероятностью ошибки на бит, равной и показателем группирования ошибок.
- •12.6. Выбор порождающего многочлена
- •12.7. Задачи
- •Приложение 1. Коды бчх
- •Приложение 4
- •Список использованных источников
- •Предметный указатель
- •Тема 1. Основные понятия и определения в области пдс………………..……....2
- •Тема 2. Системные характеристики систем передачи дискретных сообще……...11
- •Тема 3. Основные характеристики уровня дискретного канала пдс…………………21
- •Тема 4. Устройство синхронизации по элементам (усп)…………………………...50
- •Тема 5. Линейные (n,k)-коды…….………………………………………………………..54
- •Тема 6. Двоичные циклические (n,k) – коды…………………………………… …….105
- •Тема 7. Коды Рида- Соломона (рс)…………………………………………..………..165
- •7.1.3. Отображение рс-кодов над gf(2m) на двоичные коды…………………….170
- •Тема 8. Непрерывные коды……………………………………………..………………..185
- •Тема 9. Некоторые специальные классы кодов. Составные коды………………..……210
- •9.4.1. Принципы построения каскадных кодов…………………………………………………215
- •9.4.2. Режимы использования каскадных кодов……………………………………………….218
- •9.4.3. Построение двоичных каскадных кодов на основе кодов Рида–Соломона и Боуза–Чоудхури–Хоквингема………………..……………………………………………….…219
- •Тема 11. Системные методы защиты от ошибок без обратной связи………………..……234
- •Тема 12. Системные методы защиты от ошибок с обратной связью…..…………….244
5.2.2. Способы представления кодовых комбинаций
Широкое применение в теории кодирования нашло представление кодовых комбинаций в виде векторов некоторого векторного пространства или многочленов от формальной неизвестной х. Для двоичных кодов такое соответствие устанавливается следующим образом:
,
или
,
где аi– элемент кодовой комбинации;opm
n-мерного
векторного пространства;х–
формальная переменная.
Таким образом, множество кодовых комбинаций n– элементного кода можно представить либо совокупностью векторовn-мерного векторного пространства, либо совокупностью многочленов, степень которых не старшеn– 1. Такое представление дает возможность ввести действия над кодовыми комбинациями, аналогичные действиям над векторами или многочленами и использовать для построения корректирующих кодов алгебраические системы, описанные выше. Так, например, по аналогии с операциями над векторамиn– мерного векторного пространства определим правило сложения двухn– элементных кодовых комбинаций следующим образом:
В этом случае, когда элементами кодовой комбинации являются двоичные элементы 0 и 1, то результирующая кодовая комбинация получается путем поразрядного сложения по модулю 2 исходных комбинаций.
Умножение кодовой комбинации на скаляр (двоичный элемент) определим правилом
Под скалярным произведением двух кодовых комбинаций длины n будем понимать скаляр (двоичный элемент), получаемый следующим образом:
Если скалярное произведение двух кодовых комбинаций равно 0, то такие кодовые комбинации будем называть ортогональными.
5.2.3. Определение группового кода
Групповым кодом называю такой код, множество кодовых комбинаций которого образует группу (подгруппу) по операции поразрядного сложения по модулю 2
Если в кодовой комбинации группового кода известны места информационных и избыточных элементов, то такой групповой код называют систематическим. В систематических кодах введение избыточности в кодовые комбинации осуществляется на основе связи между информационными и избыточными элементами. Название “систематический” коду дано вследствие того, что связь между информационными и избыточными элементами задается в виде систем линейных соотношений. Итак, систематический код – это разделимый групповой код. Групповая структура кода обеспечивает ему ряд важных свойств.
Свойство 5.1. Минимальное кодовое расстояние группового кода равно минимальному весу его ненулевых кодовых комбинаций.
Действительно, кодовое расстояние между комбинациями определяется как вес суммы двух комбинаций. В силу свойства замкнутости сумма двух комбинаций также является кодовой комбинацией, т.к. таблице кодовых расстояний группового кода однозначно соответствует таблица весов кодовых комбинаций данного кода, а раз так, то и минимальному кодовому расстоянию в групповом коде соответствует ненулевая кодовая комбинация с минимальным весом.
Другие важные свойства, обусловленные групповой структурой кодов, будут изучены в связи с матричным описанием этих кодов.
Для групповых кодов существует специальное обозначение (n, k) – код, гдеn - длина кодовой комбинации,k- число информационных элементов.