Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gidravlika27-52.docx
Скачиваний:
57
Добавлен:
15.03.2015
Размер:
3.56 Mб
Скачать

46. Виды потерь энергии.

Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жид­кости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большин­ства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда:  

Потери напора принято подразделять на две категории:

потери напора, распределённые вдоль всего канала, по которому перемеща­ется жидкость (трубопровод, канал, русло реки и др.), эти потери пропорцио­нальны длине канала и называются потерями напора по длинесосредоточенные потери напора: потери напора на локальной длине потока (достаточно малой по сравнению с протяжённостью всего потока). Этот вид потерь во многом зависит от особенностей преобразования параметров пото­ка (скоростей, формы линий тока и др.). Как правило, видов таких потерь до­вольно много и их расположение по длине потока зачастую далеко не зако­номерно. Такие потери напора называют местными потерями или потерями напора на местных гидравлических сопротивлениях. Это вид потерь напора  также принято исчислять в долях от скоростного напораТогда полные потери напора можно представить собой как сумму всех видов потерь напора:

Оценка величины местных потерь напора практически всегда базируются на резуль­татах экспериментов, по результатам таких экспериментов определяются величины коэф­фициентов потерь. Для вычисления потерь напора по длине имеются более или менее на­дёжные теоретические предпосылки, позволяющие вычислять потери с помощью при­вычных формул.

47.Зависимость для определения потерь напора по длине и на местные сопротивления. Практическое применение.

-

48. Гидравлически гладкие и гидравлически шероховатые трубы.

Потери напора по длине потока могут весьма существенно зави­сеть от характеристик шероховатости стенок трубы, в которых проис­ходит движение. Поверхность стенок, ограничивающих поток, всегда отличается от идеально гладкой поверхности наличием выступов и не­ровностей. Величина и форма этих выступов зависят от материала стенки, от его обработки, условий эксплуатации, в процессе которой возможна коррозия, могут выпасть и осесть на стенках твердые части­цы наносов и т.п. В дальнейшем мы не будем детально изучать различ­ные виды шероховатости, а будем представлять стенки труб покрыты­ми однородными бугорками со средней абсолютной высотой выступа шероховатости, обозначаемой Δ.

В зависимости от того, как относятся размеры выступов шерохо­ватости и толщина ламинарной пленки, все трубы могут быть при тур­булентном режиме движения подразделены на три вида.

Если высота выступов шероховатости Δ меньше, чем толщина ла­минарной пленки (Δ <δ), то в этом случае шероховатость стенок не влияет на характер движения и соответственно потери напора не зави­сят от шероховатости, а стенки называются гидравлически гладкими.

Когда высота выступов шероховатости превышает толщину лами­нарной пленки (Δ <δ), то потери напора зависят от шероховатости, и такие трубы называются гидравлически шероховатыми. В третьем слу­чае, являющемся промежуточным между двумя вышеуказанными, аб­солютная высота выступов шероховатости примерно равна толщине ламинарной пленки. В этом случае трубы относятся к переходной об­ласти сопротивления. Толщина ламинарной пленки определяется по формуле:

(1.87)

Итак, различают стенки (трубы, русла) гидравлически гладкие и шероховатые. Такое разделение является условным, поскольку, как следует из формулы (1.87), толщина ламинарной пленки обратно про­порциональна числу Рейнольдса (или средней скорости). Таким обра­зом, при движении вдоль одной и той же поверхности с неизменной вы­сотой выступа шероховатости в зависимости от средней скорости (чис­ла Рейнольдса) толщина ламинарной пленки может изменяться. При увеличении числа Рейнольдса толщина ламинарной пленки δ уменьша­ется и стенка, бывшая гидравлически гладкой, может стать шерохова­той, так как высота выступов шероховатости окажется больше толщи­ны ламинарной пленки и шероховатость станет влиять на характер движения и, следовательно, на потери напора.

Для последующих практических расчетов можно принимать ори­ентировочные значения высоты выступа шероховатости для труб: тру­бы новые стальные и чугунные - Δ ≈ 0,45 - 0,50 мм, трубы, бывшие в эксплуатации (так называемые «нормальные»), Δ ≈ 1,35 мм.

Таким образом, зная высоту выступа шероховатости и определив толщину ламинарной пленки, можно, сравнив их размеры, опреде­лить, гидравлически гладкой или гидравлически шероховатой будет стенка, ограничивающая поток в трубе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]